Contents

			(vii) (xi) (xv) (xxiii) (xxvii)
Chap	ter 1: O	verview	
1.1	Coal Us	age: Merits and Problems	1
1.2	Carbon	Capture Utilization and Storage – Concept	8
	1.2.1	CCS potential in confronting climate change	8
	1.2.2	CCS Process	11
1.3	CO ₂ Ca ₁	oture Pathways & Technologies	15
1.4	Technol	ogy Readiness Level (TRL)	18
Chap	ter 2: C	O ₂ Capture Pathways	
2.1	Post Co	mbustion Capture	19
2.2	Oxy-fue	el Combustion (Combustion with Oxygen)	20
	2.2.1	Chemical Looping Combustion (CLC)	25
	2.2.2	Technologies for Post-combustion and Oxy-fue Combustion Captures	28
2.3	Pre-com	abustion CO ₂ Capture	29
		Upgrading Biogas	31
	2.3.2	Methane Reforming and H ₂ production	31
	2.3.3	Gasification of Coal and Biomass Fuels	32
	2.3.4	Technologies for Pre-combustion Capture	33
2.4	Direct A	air Capture	34
	2.4.1	Atmospheric CO ₂ Capture	34
	2.4.2	Direct Air Capture (DAC)	34
	2.4.3	Technologies for Direct Air Capture	38
2.5	Comparison of the Technologies 38		
2.6	Cost Co	mparison for Different Capture Processes	39

Chaj	oter 3: C	O ₂ Capture Technologies	
3.1	Overvie	w	41
3.2	Chemic	al Absorption	43
	3.2.1	Amine based Absorption for Post Combustion	
		Capture of CO ₂	45
		Amine as Solvents	48
		Chemistry of Amines Reactions	50
		Downsides	52
		History of Amines usage	56
	3.2.2	Search for New Absorbents	57
		(a) Single-amine Absorbents	58
		(b) Amine Blends	62
	3.2.3	Base Line Study in a Pilot Plant with MEA Solvent	68
	3.2.4	Multi Phase Absorbents / Biphasic Absorbents	71
		(a) Liquid-solid Phase Separation Systems	72
		(i) Aqueous Ammonia (NH ₃) Solution	72
		(ii) Aqueous Potassium Carbonate (K ₂ CO ₃)	
		Solutions	75 70
		(iii) Amino Acids (b) Liquid liquid Phage Separation Systems	78 78
		(b) Liquid-liquid Phase Separation Systems	78 79
		(i) Yeo IL Yoon's group (Kim et al. 2017)(ii) At the University of Dortmund	79 79
		(iii) Svensden's Research Group (NUST)	82
	2 2 5	Technologies Under Investigation	02
	3.2.3	(Zhuang et al. 2018)	84
		1. Ionic Liquids (ILs) as Absorbents	84
		2. Enzymatically Catalyzed Absorbent Systems	85
		3. Encapsulated Absorbents	86
	3.2.6	Amine Capture Systems for NGCC and	
	0.2.0	Supercritical PC Plants	86
	3.2.7	MEA-based Commercial Technologies	92
	3.2.8	Commercially Available Solvents	94
		Organic Solvents	
		(solvents used for physical absorption)	99

		Contents	(xix)
3.3	Adsorpt	ion Processes	101
	3.3.1	Adsorbent Materials	102
	3.3.2	Adsorbents Classification	104
		(a) Physio Sorbents	105
		(b) Chemi Sorbents	105
	3.3.3	Adsorbent Selection	124
	3.3.4	Gas-adsorbent Contactor (rotor) Systems	127
		(a) Fixed Bed Reactor	129
		(b) Moving Bed Reactor	129
		(c) Fluidized Bed Reactor	131
		(d) Multi-stage Fluidized Bed	132
	3.3.5	Mode of Regeneration	
		(TSA and PVSA Technologies)	134
		(a) Temperature Swing Adsorption (TSA)	134
		(b) Pressure Vacuum Swing Adsorption (PVSA)	135
		(c) Hybrid Regeneration Systems	138
	3.3.6	Molecular and Process Scale Challenges	138
	3.3.7	Demonstration Status	141
	3.3.8	Important Issues that Need Attentions	143
3.4	Calcium	Looping Technology	144
	3.4.1	Technology Description	144
	3.4.2	Application of CaL to Post Combustion	
		Carbon Capture	149
	3.4.3	11	
		(CaL for partial oxidation process)	151
	3.4.4	Application to Cement Manufacturing	153
3.5	Membra	nne Technologies for CO ₂ Capture	154
	3.5.1	Membranes and Capture Pathways	155
	3.5.2	Inorganic Membranes	157
	3.5.3	Polymeric Membranes	161
	3.5.4	Mixed Matrix Membranes (MMMs)	167
	3.5.5	Membranes Combined with Chemical Absorption	174
	3.5.6	Pilot Plant Studies	175

(xx) Content

3.6	Cryoger	nic CO ₂ Capture Systems	177
	3.6.1	Cryogenic Types	177
		Cryogenic Condensation	178
		Cryogenic Sublimation	178
	3.6.2	Hybrid Cryogenic Capture Processes using	
		Membranes	185
	3.6.3	Comparison of Capture Technologies	188
3.7	Current	Deployment of Carbon Capture Facilities	191
	(1) Pow	er Generation	192
	(2) Cem	ent Manufacturing	193
	` /	and Steel	194
	(4) Bioe	ethanol	194
Chap	oter 4: C	O ₂ Utilization and Techno-Economic Analysis	
4.1	Introduc	etion	195
4.2	CO ₂ Uti	lization Pathways	196
4.3	CO ₂ Utilization and Carbon Cycle		205
4.4	Convers	sion of CO ₂ to Fuels and Feedstocks	207
	4.4.1	CO ₂ Reduction Reaction (CO ₂ RR)	208
	4.4.2	Electrolyser Performance	212
4.5	Status o	f CO ₂ -based Products Production	216
	4.5.1	Conventional Utilization Pathways Status	218
		(a) Chemicals & Fuels	218
		(b) Microalgae	222
		(c) Concrete Building/Construction Materials	223
		(d) CO ₂ -EOR	224
	4.5.2	Non-conventional Utilization Pathways	225
		(a) BECCS (Bioenergy with carbon capture and	226
		storage) (b) Enhanced Weathering	226 227
		(b) Enhanced Weathering(c) Afforestation/Reforestation	227
		(d) Soil Carbon Sequestration and Biochar	229
4.6	Simulat	ion using Machine Learning (ML) & Life cycle	_ _ ,
		nent (LCA)	231
4.7		economic Analysis of Carbon Capture Processes	236

			Contents	(xxi)
Chaj	pter 5: T	ransport and Storage of Captured CO ₂		
5.1	Introduc	etion		246
5.2	CO ₂ Tra	ansportation		246
	5.2.1	Transport Process		248
	5.2.2	Pipeline Operation		248
	5.2.3	Composition of the CO ₂ Stream		253
5.3	CO ₂ Transport by Ship		255	
5.4	Storage	of CO ₂		259
	5.4.1	Overview		259
	5.4.2	Deep Saline Formations		261
	5.4.3	Commercial/Pilot Projects		269
	5.4.4	Status of CCS Facilities: The GCCSI 2022 Report		274
	5.4.5	Depleted Oil and Gas Fields		277
	5.4.6	Pilot/Commercial Projects		284
	5.4.7	Storage in Unmineable Coal Seams		288
	5.4.8	Storage in Basalt Formations		296
Anno	exures			298
Refe	References			311
Index			421	