Chapter 1

Per Unit Representation

1.0 Introduction

The per unit value of any quantity is defined as the ratio of its actual value to another arbitrarily selected value of quantity of same dimensions. It is convenient to express impedances, voltages, powers and currents in terms of p.u. in the process of computation in power systems.

$$
\text { Per unit value } \Delta=\frac{\text { Actual }}{\text { Base }}
$$

i.e ratio of actual value to the base value of the same dimension.

For any quantity $X, X_{\text {p.u }}=\frac{X}{X_{\text {Base }}}$
Dividing the numerical value by a chosen base value of the same dimensions, any quantity can be converted to a per unit quantity. Percent quantities and per unit quantities are different by a factor of 100 . Per unit quantities are dimensionless.

Suppose, a base voltage of 10 KV is considered, voltages of $10,15,20 \mathrm{KV}$ can be shown as, $1.00,1.50,2.00$ per unit respectively. In terms of percentage, $100,150,200$ percent.
Let us consider,
$\mathrm{I}_{\mathrm{A}}=$ Actual current, Amperes
$\mathrm{I}_{\mathrm{B}}=$ Base current, Amperes
$\mathrm{V}_{\mathrm{A}}=$ Actual voltage, Volts
$\mathrm{V}_{\mathrm{B}}=$ Base voltage, Volts
$\mathrm{Z}_{\Omega}=$ Actual impedance, Ohms
$\mathrm{Z}_{\mathrm{b}}=$ Base impedance, Ohms
$\mathrm{S}_{\mathrm{va}}=$ Actual Volt ampere
$\mathrm{S}_{\mathrm{b}}=$ Base Volt ampere
Per unit current, $\mathrm{I}_{\mathrm{pu}}=\mathrm{I}_{\mathrm{A}} / \mathrm{I}_{\mathrm{B}}$
Per unit voltage, $V_{p u}=V_{A} / V_{B}$

Per unit impedance, $Z_{p u}=Z_{\Omega} / Z_{B}$
$Z_{\Omega}=R_{\Omega}+j X_{p u} ; Z_{p u}=Z_{\Omega} / Z_{b}=R_{\Omega} / Z_{B}=j X_{\Omega} / Z_{B}$
or $Z_{p u}=R_{p u}+j X_{p u}$
$R_{p u}=R_{\Omega} / Z_{B}$ and $X_{p u}=X_{\Omega} / Z_{B}$
Per unit volt-ampere, $\mathrm{S}_{\mathrm{pu}} \Delta=\mathrm{S}_{\mathrm{va}} / \mathrm{S}_{\mathrm{B}}$
$S=P+j Q=V I \times ; S_{p u}=S_{V A} / S_{B}=P / S_{B}+j Q / S_{B}$
or $S_{p u}=P_{p u}+j Q_{p u}$
$P_{p u}=P_{\text {watt }} / S_{B}$ and $Q_{p u}=Q_{\text {watt }} / S_{B}$
For the single phase circuit,
$\mathrm{Z}_{\mathrm{B}}=\mathrm{V}_{\mathrm{B}} / \mathrm{I}_{\mathrm{B}}$ and $\mathrm{S}_{\mathrm{B}}=\mathrm{V}_{\mathrm{B}} \mathrm{I}_{\mathrm{B}}$
and,
Base current $\mathrm{I}_{\mathrm{B}}=\mathrm{S}_{\mathrm{B}} / \mathrm{V}_{\mathrm{B}}$

$$
=\frac{\text { Base KVA }}{\text { Base KV }}
$$

Formulae for one base to another base:

$$
\mathrm{Z}_{\mathrm{pu} .2}=\mathrm{Z}_{\mathrm{pu} .1} \times\left(\mathrm{S}_{\mathrm{b} 2} / \mathrm{S}_{\mathrm{b} 1}\right) \times\left(\mathrm{V}_{\mathrm{b} 1} / \mathrm{V}_{\mathrm{b} 2}\right)^{2}
$$

Example 1: A single phase Transformer is rated 110/440V, 4 KVA having Leakage reactance at LT side is 0.2Ω, Determine the Leakage reactance in p.u.
Solution: Given: $\mathrm{V}_{\mathrm{B}}=110 \mathrm{~V}, \mathrm{~S}_{\mathrm{B}}=4 \mathrm{KVA}, \mathrm{Z}_{\mathrm{Act}}=0.2 \Omega$
We know that,

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{B}}=\frac{(\text { BaseKV })^{2}}{\text { BaseMVA }} \\
& \mathrm{Z}_{\mathrm{B}} \text { at } \mathrm{LT} \text { side }=\frac{\left(110 \times 10^{-3}\right)^{2} \times 1000}{4}=3.025 \Omega \\
& \mathrm{Z}_{\text {p.u. }}=\frac{\mathrm{Z}_{\text {Act }}}{\mathrm{Z}_{\text {Base }}}=\frac{0.2}{3.025}=0.0661 \text { p.u. }
\end{aligned}
$$

For Secondary side:
$Z_{1}^{\prime}=Z_{1}\left(\frac{N_{2}}{N_{1}}\right)^{2}$ where, $N_{1} \& N_{2}$ are the no. of turns on Primary and Secondary side.

$$
\mathrm{Z}_{1}^{\prime}=0.2\left(\frac{440}{110}\right)^{2}=3.2
$$

and $\quad \mathrm{Z}_{\mathrm{B}}=\frac{\left(440 \times 10^{-3}\right)^{2} \times 1000}{4}=48.4 \Omega$

$$
Z_{\text {p.u }}=\frac{3.2}{48.4}=0.0661 \text { p.u. }
$$

Example 2: The following figure represent a part of electrical network with component. Determine the p.u. reactance of the components:
Synchronous Generator: $25 \mathrm{MVA}, 11 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.15$ p.u.
Transformer T_{1} : 40MVA, $12.5 \Delta / 132 \mathrm{Y}$ KV, $\mathrm{X}=0.1 \mathrm{p} . \mathrm{u}$
Line: $200+\mathrm{j} 500 \Omega$

Fig.1.1
Draw the impedance diagram for the system shown in Fig.1.1. For Transmission line choose the base value as 132 KV and 25 MVA .

Solution: For Generator:
The Base $u V$ of transmission line is 132 uV . Hence, base KV at the Generator side 12.5 KV

$$
\begin{aligned}
X^{\prime \prime} & =j 0.15 \times \frac{25}{25} \times\left(\frac{11}{12.5}\right)^{2} \\
& =j 0.116 \mathrm{p} . \mathrm{u}
\end{aligned}
$$

For Transformer 1:
Base KV at the transformer $\left(\mathrm{T}_{1}\right)$ secondary side is 132 uV

$$
\begin{aligned}
\mathrm{X}^{\prime \prime} & =\mathrm{j} 0.1 \times \frac{25}{40} \times\left(\frac{132}{132}\right)^{2} \\
& =j 0.0625 \mathrm{p} . \mathrm{u}
\end{aligned}
$$

For Transformer 2:

$$
\begin{aligned}
\mathrm{X}^{\prime \prime} & =\mathrm{j} 0.1 \times \frac{25}{30} \times\left(\frac{132}{132}\right)^{2} \\
& =j 0.083 \mathrm{p} . \mathrm{u} .
\end{aligned}
$$

For Motor:

$$
\begin{aligned}
X^{\prime \prime} & =j 0.15 \times \frac{25}{20} \times\left(\frac{11}{11}\right)^{2} \\
& =j 0.187 \text { p.u. }
\end{aligned}
$$

For Transmission Line:

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{B}} & =\frac{(\text { BaseKV })^{2}}{\text { BaseMVA }} \\
& =\frac{(132)^{2}}{25}=696.96 \Omega \\
\text { Zp.u } & =\frac{\mathrm{Z}_{\text {Act }}}{\mathrm{Z}_{\text {Base }}}=\frac{200+\mathrm{j} 500}{696.96}=0.286+\mathrm{j} 0.717
\end{aligned}
$$

For a Load of 5MVA and 0.8 p.f lagging,
$\mathrm{P}=\mathrm{S} \cos \varnothing=5 \times 0.8=4 \mathrm{MW}$
$\mathrm{Q}=\mathrm{S} \sin \emptyset=5 \times 0.6=3 \mathrm{MVAr}$
If load is represented as series impedance,

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{p} . \mathrm{u} .}=\mathrm{V}_{\mathrm{p} . \mathrm{u}}^{2} \mathrm{~S}_{\mathrm{B}} \cdot \frac{\mathrm{P}}{\mathrm{P}^{2}+\mathrm{Q}^{2}} \text { and } \\
& \mathrm{X}_{\mathrm{p} . \mathrm{u}}=\mathrm{V}_{\mathrm{p.u}}^{2} \cdot \mathrm{~S}_{\mathrm{B}} \cdot \frac{\mathrm{Q}}{\mathrm{P}^{2}+\mathrm{Q}^{2}}
\end{aligned}
$$

Here, $\quad V_{p . u}=\frac{11}{11}=1$ p.u
$\mathrm{S}_{\mathrm{B}}=25 \mathrm{MVA}$
So,

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{p} . \mathrm{u}}=(1)^{2} \times 25 \times \frac{4}{4^{2}+3^{2}}=4 \mathrm{p} . \mathrm{u} \\
& \mathrm{X}_{\mathrm{p} . \mathrm{u}}=(1)^{2} \times 25 \times \frac{3}{4^{2}+3^{2}}=3 \mathrm{p} . \mathrm{u}
\end{aligned}
$$

P.U Impedance Diagram:

Fig.1.2
Example 3: A 3 bus system is given in Fig.1.3. The ratings of the various components are listed below:

Fig.1.3
Generator 1:40MVA, $12.8 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.2 \mathrm{p} . \mathrm{u}$
Generator 2:50MVA, $12.2 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.15 \mathrm{p} . \mathrm{u}$
Transformer1:40MVA, $12 \mathrm{KV} / 100 \mathrm{KV}$ Y/Y,X $=0.1$ p.u
Transformer2:20MVA, $13.5 \mathrm{KV} / 125 \mathrm{KV}$ Y/Y,X $=0.20 \mathrm{p} . \mathrm{u}$
The line impedance are shown in Fig.1.3. Determine the reactance diagram based on 40 MVA and 12.8 KV as base quantities in generator 1 .
Solution: Base MVA $=40$; Base KV $=12.8$

Generator 1:

$$
\mathrm{Z}_{\text {p.u.new }}=\mathrm{Z}_{\text {p.u.given }} \times\left(\frac{\text { Base KV given }}{\text { Base KV new }}\right)^{2} \times\left(\frac{\text { Base MVA new }}{\text { Base MVA given }}\right)
$$

Per Unit Reactance $=0.2 \times(12.8 / 12.8)^{2} \times(40 / 40)$

$$
=0.0 .2
$$

Transmission Line 1:

Base voltage along the transmission line whose impedance is $\mathrm{j} 40 \Omega=12.8 \times 100 / 12=106 \mathrm{kV}$

$$
\begin{aligned}
\text { Base impedance } & =\frac{(\text { Base KV })^{2}}{\text { Base MVA }} \\
& =106^{2} / 40=280.9 \Omega
\end{aligned}
$$

Per unit impedance $=40 / 280.9$

$$
=0.1423 \mathrm{p} . \mathrm{u}
$$

Generator 2:

Base voltage $=106 \times 12.5 / 10.5$

$$
\begin{aligned}
& =12 \mathrm{KV} \\
\mathrm{X}_{\mathrm{G} 2} & =0.15 \times(12.2 / 12)^{2} \times 40 / 50 \\
& =4.4652 \mathrm{p} . \mathrm{u}
\end{aligned}
$$

Transformer 1:

40MVA, $12 \mathrm{KV}, \mathrm{X}=0.1 \mathrm{p} . \mathrm{u}$
Base values; $40 \mathrm{MVA}, 12.8 \mathrm{KV}$

$$
\begin{aligned}
\mathrm{X}_{\mathrm{T} 1} & =0.1 \times(12 / 12.8)^{2} \times 40 / 40 \\
& =0.0878 \mathrm{p} . \mathrm{u}
\end{aligned}
$$

Transformer 2:

$20 \mathrm{MVA}, 11.5 \mathrm{KV}, \mathrm{X}=0.20 \mathrm{p} . \mathrm{u}$
Base Voltage $=106 \times 13.5 / 125$

$$
=11 \mathrm{KV}
$$

$$
\begin{aligned}
\mathrm{X}_{\mathrm{T} 2} & =0.1 \times(11.5 / 11)^{2} \times 40 / 20 \\
& =0.2185 \mathrm{p} . \mathrm{u}
\end{aligned}
$$

Transformer 3:

Base Voltage on the H.T side of transformer 3 is 10 KV

$$
\begin{aligned}
\mathrm{X}_{\mathrm{T} 3} & =0.2 \times(115 / 108)^{2} \times 40 / 35 \\
& =0.25916 \mathrm{p} . \mathrm{u}
\end{aligned}
$$

Generator 3:

Base voltage on the bus $=106 \times 13.5 / 125$

$$
=11 \mathrm{KV}
$$

$20 \mathrm{MVA}, 12 \mathrm{KV}, \mathrm{x}^{\prime \prime}=0.20$ p.u
Base values: 40MVA, 11KV

$$
\begin{aligned}
\mathrm{X}_{\mathrm{G} 3} & =0.20 \times(12 / 11)^{2} \times 40 / 20 \\
& =0.476 \mathrm{p} . \mathrm{u}
\end{aligned}
$$

Transmission line 2:

Base KV $=106$

Base MVA $=40$

$$
\begin{aligned}
\text { Base impedance } & =\frac{106^{2}}{40} \\
& =280.9 \Omega
\end{aligned}
$$

Per unit impedance $=j 20 / 280.9$

$$
=\mathrm{j} 0.0711
$$

Reactance Diagram:

Fig.1.4
Example 4: Draw the impedance diagram for the power system shown in Fig.1.Use a Base of $45 \mathrm{KVA}, 20 \mathrm{KV}$ at generator G1. The ratings of the generators and transformers are:
Generator 1: $20 \mathrm{MVA}, 18 \mathrm{KV}, \mathrm{X}^{\prime \prime}=20 \%$,
Generator 2: $20 \mathrm{MVA}, 20 \mathrm{KV}, \mathrm{X}^{\prime \prime}=20 \%$,
Synchronous motor 3, 35 MVA, $20 \mathrm{KV}, \mathrm{X}^{\prime \prime}=20 \%$,
Transformer 1: Three phase Y-Y Transformers: $20 \mathrm{MVA}, 148 \mathrm{Y} / 20 \mathrm{Y}$ KV, $\mathrm{X}=10 \%$,
Transformer 2: Three phase Y- Δ Transformers: $10 \mathrm{MVA}, 148 \mathrm{Y} / 20 \Delta \mathrm{KV}, \mathrm{X}=10 \%$,

Fig.1.5

Solution: Generator 1:

Given: $25 \mathrm{MVA}, 18 \mathrm{KV}, \mathrm{x}^{\prime \prime}=20 \%$
Base values: 45 KVA , Base $\mathrm{KV}=20$

$$
Z_{\text {p.unew }}=Z_{\text {p.ugiven }} \times\left(\frac{\text { Base KV given }}{\text { Base KV new }}\right)^{2} \times\left(\frac{\text { Base MVA new }}{\text { Base MVA given }}\right)
$$

$\mathrm{X}_{\mathrm{G} 1}=0.2 \times(18 / 20)^{2} \times\left(45 / 20 \times 10^{3}\right)$

$$
==0.2916 \text { p.u. }
$$

Transformer 1:

Given: $25 \mathrm{MVA}, 20 \mathrm{KV}, \mathrm{X}=10 \%$
Base values: $45 \mathrm{KVA}, 20 \mathrm{KV}$

$$
\begin{aligned}
\mathrm{X}_{\mathrm{T} 1} & =0.1 \times\left(45 / 20 \times 10^{3}\right) \\
& =0.00025 \mathrm{p} . \mathrm{u}
\end{aligned}
$$

Transmission Lines:

Base impedance $=(\text { Base KV })^{2} /$ Base MVA
Base impedance $=148^{2} / 45 \times 1000$

$$
=547600 \Omega
$$

Per unit impedance $=$ Actual impedance $/$ Base impedance
p.u impedance $=0.0000821$ p.u
p.u impedance of the other transmission line $=20 / 547600=0.0000807 \mathrm{p} . \mathrm{u}$

Generator 2:

$$
\mathrm{X}_{\mathrm{G} 2}=\mathrm{X}_{\mathrm{G} 1}=0.0003645 \mathrm{p} . \mathrm{u}
$$

Y- Δ transformer
Given: $10 \mathrm{MVA}, 128 \mathrm{Y} / 12.8 \mathrm{k} \Delta \mathrm{KV}, \mathrm{X}=10 \%$,
Base values; $45 \mathrm{KVA}, 128 \mathrm{KV}$

$$
\begin{aligned}
\mathrm{X} & =\left(0.1 \times 45 / 10 \times 10^{3}\right) \\
& =0.0005 \mathrm{p} . \mathrm{u}
\end{aligned}
$$

Motor:

Given: $35 \mathrm{MVA}, 12.8 \mathrm{KV}, \mathrm{x}^{\prime \prime}=20 \%$
Base values: $45 \mathrm{KVA}, 128 \mathrm{KV}$

$$
\begin{aligned}
\mathrm{X}_{\mathrm{m}} & =0.2 \times 45 / 35 \times 10^{3} \\
& =0.0000257 \mathrm{p} . \mathrm{u}
\end{aligned}
$$

Impedance diagram:

Fig.1.6
Example 5: Three generators are rated as follows:
Generator $1-120 \mathrm{MVA}, 40 \mathrm{KV}$, reactance 14%.
Generator $2-170 \mathrm{MVA}, 35 \mathrm{KV}$, reactance 9%.
Generator $3-140 \mathrm{MVA}, 31 \mathrm{KV}$, reactance 16%.
Determine the reactance of the generator corresponding to base values of 250 MVA and 45 KV .

Solution:

Generator 1:

$120 \mathrm{MVA}, 40 \mathrm{kV}, \mathrm{x}^{\prime \prime}=0.14$

$$
\begin{aligned}
& \quad \mathrm{Z}_{\text {p.u.new }}=\mathrm{Z}_{\text {p.u.given }} \times\left(\frac{\text { Base KV given }}{\text { Base KV new }}\right)^{2} \times\left(\frac{\text { Base MVA new }}{\text { Base MVA given }}\right) \\
& \mathrm{X}^{\prime \prime}=0.14 \times(40 / 45)^{2} \times 250 / 120 \\
& =0.230 \text { p.u. }
\end{aligned}
$$

Generator 2:

$$
170 \mathrm{MVA}, 35 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.09
$$

$$
\mathrm{X}^{\prime \prime}=0.09 \times(35 / 45)^{2} \times 250 / 170=0.080 \text { p.u. }
$$

Generator 3:

$$
\begin{aligned}
& 140 \mathrm{MVA}, 31 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.16 \\
& \begin{aligned}
\mathrm{X}^{\prime \prime} & =0.16 \times(31 / 45)^{2} \times(250 / 140) \\
& =0.1350
\end{aligned}
\end{aligned}
$$

Example 6: Determine the generator voltage for the given system shown in Fig. 1.7.

Fig.1.7
Solution: Assume a base of 120 MVA and 200 KV in the transmission line

Generator:

$$
\begin{aligned}
& \mathrm{Z}_{\text {p.u.new }}=\mathrm{Z}_{\text {p.u }} \times\left(\frac{\text { Base KV given }}{\text { Base KV new }}\right)^{2} \times\left(\frac{\text { Base MVA new }}{\text { Base MVA given }}\right) \\
& \mathrm{x}_{\mathrm{G}}^{\prime \prime}=0.65 \times(10 / 9.523)^{2} \times(120 / 85) \\
& \quad=1.0118 \text { p.u. }
\end{aligned}
$$

Transformer:

$$
\begin{aligned}
X_{\mathrm{T}} & =0.2 \times(210 / 200)^{2} \times(120 / 40) \\
& =0.6615
\end{aligned}
$$

Transmission lines:

Base impedance $=(\text { BaseKV })^{2} /$ Base MVA

Base impedance $=(200)^{2} / 120$

$$
=333 \Omega
$$

Per unit impedance $=$ Actual impedance/Base impedance
P.U impedance $=120 / 333=0.3603$ p.u.

Resistive load of 550Ω
$R_{\text {p.u }}=550 / 333=1.6516$ p.u.
Impedance diagram:

Fig.1.8

At the load bus:

$$
\begin{aligned}
\mathrm{V}_{\text {p.u }} & =1 \text { p.u. } \\
\mathrm{R}_{\text {p.u }} & =1.6516 \text { p.u. } \\
\mathrm{I}_{\text {p.u }} & =\mathrm{V}_{\text {p.u. }} \\
& =1 / 1.6516=0.605 \text { p.u. }
\end{aligned}
$$

Let $I_{\text {p.u. }}$ be taken as the reference phasor.

$$
I_{\text {p.u. }}=0.605+\mathrm{j} 0=0.605<0^{\circ}
$$

By Kirchhoff's voltage law,
Voltage drop in the network $=I_{p . u}\left[R_{p . u}+\mathrm{j}\left(\mathrm{X}_{\mathrm{G}}+\mathrm{X}_{\mathrm{T}}+\mathrm{X}_{\mathrm{L}}\right)\right]$

$$
\begin{aligned}
& =0.605[1.6516+\mathrm{j}(1.0118+0.6615+0.3603)] \\
& =0.605[1.6516+\mathrm{j} 2.0336] \\
& =0.605 \times 2.6197<50.9159 \\
& =1.589 \text { p.u. }
\end{aligned}
$$

Actual generator terminal voltage:
$\mathrm{V}_{\mathrm{G}}=\mathrm{V}_{\mathrm{p} . \mathrm{u}} \times$ Base voltage at the generator terminals
$=1.5849 \times 9.523$
$=15.0930 \mathrm{KV}$

Example 7: A 200 MVA, 66 KV Three phase generator has a subtransient reactance of 20%. The generator is connected to 3 motors through a transmission line and two transformers. The motors have rated input of 40 MVA, 30 MVA and 45 MVA at 33 KV with 15% subtransient reactance. The 3phase transformer are rated at $220 \mathrm{MVA}, 64 / 220 \mathrm{KV}$ ' Y ' with leakage reactance of 10%. The line has a reactance of 45 Ohms. Selecting the generator rating as the quantities in generator circuit, determine the base quantities in other parts of the system and evaluate the corresponding per unit values.

Solution:

Transmission line diagram for given statement is:

Fig.1.9
The base voltage in transmission line $=66 \times(220 / 64)$

$$
=226.875 \mathrm{KV}
$$

In the motor circuit, The base voltage $=226.875 \times(64 / 220)$

$$
=66 \mathrm{KV}
$$

Base impedance in the transmission line $=\left(\right.$ Base KV ${ }^{2} /$ Base MVA $) \Omega$

$$
\begin{aligned}
& =\left((226.875)^{2} / 200\right) \Omega \\
& =257.36 \Omega
\end{aligned}
$$

Per unit impedance $=(\mathrm{j} 45 / \mathrm{j} 257.686)$ p.u.

$$
=0.1746 \mathrm{p} . \mathrm{u}
$$

Motor 1:

Rating: $40 \mathrm{MVA}, 33 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.15$

$$
\begin{aligned}
& Z_{\text {p.u.new }}= Z_{\text {p.u given }} \times\left(\frac{\text { Base KV given }}{\text { Base KV new }}\right)^{2} \times\left(\frac{\text { Base MVA new }}{\text { Base MVA given }}\right) \\
& \begin{aligned}
\text { Zp.u new } & =0.15 \times\left[(33 / 66)^{2} \times(200 / 30)\right] \text { p.u. } \\
& =0.1875 \text { p.u. }
\end{aligned}
\end{aligned}
$$

Motor 2:
Rating: $30 \mathrm{MVA}, 33 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.15$.

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{p} . \mathrm{u} . \text { new }}= & 0.15 \times(33 / 66)^{2} \times(200 / 45) \mathrm{p} . \mathrm{u} \\
= & 0.25 \mathrm{p} . \mathrm{u}
\end{aligned}
$$

Motor 3:

Rating: $45 \mathrm{MVA}, 33 \mathrm{kV}, \mathrm{X}^{\prime \prime}=0.15$

$$
\begin{aligned}
\mathrm{Z}_{\text {p.u (new) }} & =0.15 \times(33 / 66)^{2} \times(200 / 45) \mathrm{p} . \mathrm{u} \\
& =0.16 \mathrm{p} . \mathrm{u}
\end{aligned}
$$

Transformer:

Rating: $220 \mathrm{MVA}, 64 \mathrm{kV}, \mathrm{X}^{\prime \prime}=0.1$
$X^{\prime \prime}(T)=0.1 \times(64 / 66)^{2} \times(200 / 220)=0.08548$ p.u
Example 8: Draw the per unit impedance diagram for the power system below. Neglecting the reactance and use a base of $150 \mathrm{MVA}, 110 \mathrm{KV}$ in 40 ohms line. The rating of the generator, motor and transformers are:

Generator: $45 \mathrm{MVA}, 32 \mathrm{KV}, \mathrm{X}=15 \%$
Motor: 42 MVA, $11 \mathrm{KV}, \mathrm{X}=25 \%$
Y-Y Transformer: 35 MVA, 22/110 KV, 13\%
Y- Transformer: 30 MVA, 20/110 KV, 13\%

Fig.1.10

Solution:

$$
\mathrm{Z}_{\mathrm{p} . \mathrm{u}(\text { new })}=\mathrm{Z}_{\mathrm{p} . \mathrm{u}(\text { given })} \times\left(\frac{\text { Base KV given }}{\text { Base KV new }}\right)^{2} \times\left(\frac{\text { Base MVA new }}{\text { Base MVA given }}\right)
$$

Generator:

New base voltage in generator $=(110 \times 22 / 110) \mathrm{KV}=22 \mathrm{KV}$
$\mathrm{X}^{\prime \prime}=0.15 \times(32 / 22)^{2} \times(150 / 45) \mathrm{p} . \mathrm{u}=1.0578 \mathrm{p} . \mathrm{u}$

Transformer 1:

New voltage in Transformer $1=(110 \times 22 / 110) \mathrm{KV}=22 \mathrm{KV}$
$\mathrm{X}^{\prime \prime}=0.13 \times(22 / 22)^{2} \times(150 / 35)$ p.u. $=0.5571$ p.u.

Transmission Line:

$$
\begin{aligned}
Z_{B} & =\frac{(\text { Base KV })^{2}}{\text { Base MVA }} \\
& =(110)^{2} / 150 \Omega
\end{aligned}
$$

$\mathrm{Z}_{\mathrm{B}}=80.66 \Omega$
$\mathrm{Z}_{\text {p.u. }}=$ (Actual impedance $/$ Base impedance) p.u.
$=40 / 80.66$ p.u.

$$
=0.49 \text { p.u. }
$$

Transformer 2:

New base voltage in Transformer $2=(110 \times 20 / 110) \mathrm{KV}=20 \mathrm{KV}$

$$
\begin{aligned}
\mathrm{X}^{\prime \prime} & =0.13 \times(20 / 20)^{2} \times(150 / 30) \text { p.u. } \\
& =0.65 \text { p.u. }
\end{aligned}
$$

Motor:

$$
\begin{aligned}
\mathrm{X}^{\prime \prime} & =0.25 \times(11 / 11)^{2} \times(150 / 42) \text { p.u. } \\
& =0.8928 \text { p.u. }
\end{aligned}
$$

Impedance diagram:

Fig.1.11
Example 9: 3 bus system is given in fig.1.12. The ratings of the various components are listed below:

Generator 1: 45 MVA, $12.5 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.12$ p.u.
Generator 2: $30 \mathrm{MVA}, 12.3 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.3$ p.u.
Generator 3:20 MVA, $10 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.2$ p.u.
Transformer 1: $40 \mathrm{MVA}, 11 / 110 \mathrm{KV}$ Y/Y, X $=0.15$ p.u.
Transformer 2: $20 \mathrm{MVA}, 12.5 / 115 \mathrm{KV} \mathrm{Y} / \mathrm{Y}, \mathrm{X}=0.2$ p.u.
Transformer 3: $30 \mathrm{MVA}, 12.5 / 115 \mathrm{KV} \mathrm{Y} / \mathrm{Y}, \mathrm{X}=0.1$ p.u.

Fig.1.12
The line impedances are shown in Fig.1.12. Determine the reactance based on 45 MVA and 12.5 kV as base quantities in generator 1 .

Solution:

Base MVA $=45$ MVA; Base KV $=12.5 \mathrm{KV}$;

For Generator 1:

$$
\begin{aligned}
& Z_{\text {p.u new }}=Z_{\text {p.u given }} \times\left(\frac{\text { Base KVgiven }}{\text { Base KVnew }}\right)^{2} \times\left(\frac{\text { BaseMVAnew }}{\text { BaseMVAgiven }}\right) \\
& Z_{\text {p.u new }}=0.12 \times\left(\frac{12.5}{12.5}\right)^{2} \times\left(\frac{45}{45}\right)=0.12 \text { p.u. }
\end{aligned}
$$

Transformer 1:

$40 \mathrm{MVA}, 11 \mathrm{KV}, \mathrm{X}=0.15$ p.u.
Base value $45 \mathrm{MVA}, 12.5 \mathrm{KV}$

$$
\begin{aligned}
\mathrm{X}_{\mathrm{T} 1}=\mathrm{Z}_{\text {p.u new }} & =0.15 \times\left(\frac{11}{12.5}\right)^{2} \times\left(\frac{45}{40}\right) \\
& =0.13068 \text { p.u. }
\end{aligned}
$$

Transformer 2:

$20 \mathrm{MVA}, 12.5 \mathrm{KV}, \mathrm{X}=0.2$ p.u.
Base voltage on the LV side of Transformer 2 $=12.5 \times\left(\frac{110}{11}\right)$

$$
\begin{aligned}
& =125 \mathrm{KV} \\
& =125 \times\left(\frac{12.5}{115}\right) \\
& =13.5 \mathrm{KV} \\
\mathrm{X}_{\mathrm{T} 2}=0.2 \times\left(\frac{12.5}{13.5}\right)^{2} \times\left(\frac{45}{20}\right) & \\
& =0.3858 \text { p.u. }
\end{aligned}
$$

Transformer 3:

Base voltage on the HV side of transformer $3=12.5 \times\left(\frac{115}{12.5}\right)$

$$
\begin{aligned}
& =115 \mathrm{KV} \\
& =15 \times\left(\frac{115}{12.5}\right) \\
& =138 \mathrm{KV}
\end{aligned}
$$

$\mathrm{X}=0.1 \mathrm{p} . \mathrm{u}, 115 \mathrm{KV}, 30 \mathrm{MVA}$

$$
X_{T 3}=0.1 \times\left(\frac{115}{138}\right)^{2} \times\left(\frac{45}{30}\right)=0.10416 \mathrm{p} . \mathrm{u}
$$

Generator 2:

Base voltage $=125 \times\left(\frac{12.5}{115}\right)$

$$
=13.5 \mathrm{KV}
$$

$x^{\prime \prime}=0.3$ p.u., $12.3 \mathrm{KV}, 30 \mathrm{MVA}$

$$
\begin{aligned}
\mathrm{X}_{\mathrm{G} 2} & =0.3 \times\left(\frac{12.3}{13.5}\right)^{2} \times\left(\frac{45}{30}\right) \\
& =0.3735 \mathrm{p} . \mathrm{u}
\end{aligned}
$$

Generator 3:

Base voltage on the bus $=138 \times\left(\frac{12.5}{115}\right)=15 \mathrm{KV}$
$20 \mathrm{MVA}, 10 \mathrm{kV}, \mathrm{X}^{\prime \prime}=0.2$ p.u.

$$
\begin{aligned}
\mathrm{X}_{\mathrm{g} 3} & =0.2 \times\left(\frac{10}{15}\right)^{2} \times\left(\frac{45}{20}\right) \\
& =0.2 \mathrm{p} . \mathrm{u}
\end{aligned}
$$

Transmission Line 1:

Base voltage along the transmission line whose impedance is $\mathrm{j} 40 \Omega=12.5 \times\left(\frac{110}{11}\right)$
$=125 \mathrm{KV}$
Per unit impedance $=\left(\frac{\text { Actual impedance }}{\text { Base impedance }}\right)$
Base impedance $=\frac{(\text { BaseKV })^{2}}{\text { BaseMVA }}$

$$
=\frac{(125)^{2}}{45}
$$

$$
=347.22 \Omega
$$

Per unit impedance $=\left(\frac{40}{347.22}\right)=0.1152$ p.u.

Transmission Line 2:

Base $\mathrm{KV}=125$, base $\mathrm{MVA}=45$
Base impedance $=\frac{(125)^{2}}{45}=347.22 \Omega$
Per unit impedance $=\left(\frac{20}{347.22}\right)=0.0576$ p.u.

Transmission Line 3:

Base $K V=125$, Base MVA $=45$
Base impedance $=\frac{(125)^{2}}{45}=347.22 \Omega$
Per unit impedance $=\left(\frac{20}{347.22}\right)=0.0576$ p.u.

Reactance Diagram:

Fig.1.13
Example 10: $13 \mathrm{MVA}, 8 \mathrm{KV}, 3-\varphi$ Generator has a subtransient reactance of 40%. It is connected through a Δ-Y transformer to a high voltage transmission line having a total series reactance of 60Ω. At the load end of the line is a Y-Y step down transformer .Both transformer bank are composed of 1- φ transformer connected for 3- φ operation. Each of the two transformer comprising each bank is rated $5050 \mathrm{KVA}, 11 / 110 \mathrm{KV}$ with a reactance 10%. The load represented as a motor which is drawing 12 MVA at 10.2 KV with 60% reactance. Draw the impedance diagram showing all impedance in per unit. Choose a base of $12 \mathrm{MVA}, 12.5 \mathrm{KV}$ at the motor.

Fig.1.14

Solution:

Base $\mathrm{MVA}=12$; Base $\mathrm{KV}=12.5$
Load reactance $=0.6 \mathrm{pu}$.
Total MVA rating of the transformer 1 and 2 separately $=3 \times 5050 / 1000$

$$
=15.15 \mathrm{MVA}
$$

Base KV on the transmission line side $=10.2 \times\left(\frac{110 \sqrt{3}}{11 \sqrt{3}}\right)=102 \mathrm{kV}$

Base impedance $=\frac{(\text { BaseKV })^{2}}{\text { BaseMVA }}$
Base impedance in the transmission line $=102^{2} / 12=867 \Omega$
Per unit impedance $=\left(\frac{\text { Actual impedance }}{\text { Base impedance }}\right)$
Per unit impedance $=60 / 867=0.0653$ p.u

Transformer 1:

Base KV on the generator side is given by $=\left(\frac{11}{110 \sqrt{3}}\right) \times 102=5.9 \mathrm{KV}$
Per unit of transformer $\mathrm{X}_{\mathrm{t}_{1}}=0.1 \times\left(\frac{11}{5.9}\right)^{2} \times\left(\frac{12}{15.15}\right)=0.2753 \mathrm{p} . \mathrm{u}$

Generator 1:

Given: 13 MVA, $8 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.4$ p.u.
Base value $=12$ MVA, 5.9 KV

$$
\mathrm{X}_{\mathrm{g}_{1}}=0.4 \times\left(\frac{8}{5.9}\right)^{2} \times\left(\frac{12}{13}\right)=\mathrm{j} 0.6788 \mathrm{p} . \mathrm{u}
$$

Transformer 2:

Given:15.15 MVA, $110 \sqrt{3} \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.1$
Base value $=10.5 \mathrm{MVA}, 102 \mathrm{KV}$,

$$
\begin{aligned}
\mathrm{X}_{\mathrm{t}_{2}} & =0.1 \times\left(\frac{110 \sqrt{3}}{102}\right)^{2} \times\left(\frac{10.5}{15.15}\right) \\
& =0.235 \text { p.u. }
\end{aligned}
$$

Impedance diagram:

Fig.1.15

Example 11: Figure 1.16 shows a single line diagram of an unloaded three generator power system with interconnection between the generators by means of three transformers and a transmission line with two sections, with their impedances marked on the diagram. The ratings of the generators and transformers are given below:

Generator	MVA	KV	Reactance p.u
1	50	13.8	0.15
2	40	13.2	0.2
3	30	11	0.25

Fig.1.16
Transformer 1: $45 \mathrm{MVA}, 11 \Delta-110 \mathrm{Y} K V, \mathrm{X}=10 \%$
Transformer 2: $25 \mathrm{MVA}, 12.5(\mathrm{del})-115 \mathrm{Y} \mathrm{KV}, \mathrm{X}=15 \%$
Transformer 3: Single phase units, each rated 10 MVA, $6.9 / 69 \mathrm{KV}, \mathrm{X}=10 \%$
Draw the impedance diagram and mark all values in p.u. choosing a base of 30MVA, 13.8 KV in the generator 1 circuit.

Solution:

Base $\mathrm{MVA}=30$; Base $\mathrm{KV}=13.8 \mathrm{KV}$

Generator 1:

$$
\begin{aligned}
& \mathrm{Z}_{\text {p.u.new }}=\mathrm{Z}_{\text {p.u.given }} \times\left(\frac{\left(\text { Base } \mathrm{KV}_{\text {given }}\right)}{\text { Base } \mathrm{KV}_{\text {new }}}\right)^{2} \times\left(\frac{\left({\text { Base } \left.\mathrm{MVA}_{\text {new }}\right)}_{\text {Base } \mathrm{MVA}_{\text {given }}}\right)}{\mathrm{X}_{\mathrm{g} 1}=0.15 \times(13.8 / 13.8)^{2} \times 30 / 50}\right.
\end{aligned}
$$

$$
\mathrm{X}_{\mathrm{g} 1}=0.09 \text { p.u. }
$$

Transformer 1:

Given : 45MVA, $11 \Delta / 110 Y \mathrm{KV}, \mathrm{X}=10 \%$
$\mathrm{X}_{\mathrm{T} 1}=0.1 \times(11 / 13.8)^{2} \times(30 / 45)$
$X_{T 1}=0.042$ p.u.

Transmission Line 1:

Base voltage on the transmission line with impedance
$\mathrm{j} 120 \Omega=13.8 \times(110 / 11)=138 \mathrm{KV}$

$$
\begin{aligned}
& \text { Base Impedance }=\frac{(\text { Base KV })^{2}}{\text { Base MVA }} \\
& \text { Base impedance }=\frac{(138)^{2}}{30}=6.348 \Omega \\
& \text { Per unit impedance }=\frac{\text { Actual Im pedance }}{\text { Base Impedance }}
\end{aligned}
$$

Per unit impedance $=\mathrm{j} 120 / 634.8=\mathrm{j} 0.18903$ p.u.

Transmission Line 2:

Per unit impediance $=\mathrm{j} 90 / 634.8=0.14177$ p.u.

Transformer 2:

Given: 25 MVA, $12.5 \Delta / 115 \mathrm{Y}$ KV, $\mathrm{X}=0.15$ p.u.
Base value: 30MVA, 13.8KV
$\mathrm{X}_{\mathrm{T} 2}=0.15 \times(115 / 13.8)^{2} \times 30 / 25$
$\mathrm{X}_{\mathrm{T} 2}=12.5$ p.u.

Generator 2:

Base $\mathrm{KV}=13.8 \times 12.5 / 115=1.5$ p.u.
Given : 25 MVA, $1.5 \mathrm{KV}, \mathrm{X}=0.15$ p.u.
$\mathrm{X}_{\mathrm{G} 2}=0.15 \times(1.5 / 1.5)^{2} \times 30 / 25$

$$
=0.18 . \mathrm{p} . \mathrm{u}
$$

Transformer 3:

Line to line voltage when three single phase transformers are used as a three phase transformer is
$\sqrt{3} / \sqrt{3} \times 6.9 / 6.9=11.95 \mathrm{KV} / 1119.51 \mathrm{KV}$
Given: 30MVA, 11.95/119.51 KV, $X=0.1$ p.u

Base values: 30MVA, 13.8 KV
$\mathrm{X}_{\mathrm{T} 3}=0.1 \times(119.51 / 13.8)^{2} \times 30 / 30$
$\mathrm{X}_{\mathrm{T} 3}=0.499$ p.u.

Generator 3:

Base KV $=13.8 \times 11.95 / 119.51=13.79 \mathrm{KV}$
Given: 30MVA, $11 \mathrm{KV}, \mathrm{X}=0.25$
Base value: 30, 1.379
$\mathrm{X}=0.25 \times(11 / 1.379)^{2} \times 30 / 30$
$X=1012.1$ p.u.

Impedance Diagram:

Fig.1.17
Example 12: The one line diagram of an unloaded power system is shown in Fig. 1.18. Reactances of the sections of transmission line are shown in the diagram. The generators and transformers are rated as follow:

Generator 1: 20 MVA, 13.8 KV, $X^{\prime \prime}=0.2$ p.u
Generator 2: $30 \mathrm{MVA}, 18 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.2 \mathrm{p} . \mathrm{u}$.
Generator 3:30 MVA, $20 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.2$ p.u.
Transformer T1:20 MVA, $20 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.2$ p.u.
Transformer T2: Single phase units each rated 30MVA, 127/18KV, X $=10 \%$
Transformer T3:35MVA, 220Y/22Y KV, X $=10 \%$
Draw the impedance diagram with all reactance's marked in p.u. and with letters to indicate points corresponding to the one-line diagram. Choose a base of $50 \mathrm{MVA}, 13.8 \mathrm{KV}$ in the circuit of generator 1 .

Fig.1.18

Solution:

50MVA, 13.8 KV - Base values

Generator 1:

$20 \mathrm{MVA}, 13.8 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.2$.

$$
\begin{aligned}
& Z_{\text {p.u.new }}=Z_{\text {p.u.given }} \times\left(\frac{\left(\text { Base }{\left.K V_{\text {given }}\right)}_{\text {Base } K V_{\text {new }}}\right)}{}\right)^{2} \times \frac{{\text { Base } M V A_{\text {new }}}_{\text {Base } M V A_{\text {given }}}}{\mathrm{X}_{\mathrm{G} 1}=} \\
= & 0.2 \times(13.8 / 13.8)^{2} \times 50 / 20 \\
= & 0.5 \text { p.u. }
\end{aligned}
$$

Transmission line 1:

Base voltage on the transmission line using the transformation ratio $=220 \mathrm{kV}$

$$
\text { Base impedance }=\frac{(\text { Base KV })^{2}}{\text { Base MVA }}
$$

Base impedance $=(220 \times 220) / 50=968 \Omega$

$$
\text { Per unit impedance }=\frac{\text { Actual Im pedance }}{\text { Base Im pedance }}
$$

Per unit impedance $=80 / 968=0.0826$ p.u.

Transmission line 2:

Per unit impedance $=100 / 968=0.1033$ p.u.

Transformer 1:

Base $\mathrm{MVA}=50, \mathrm{KV}=13.8$
Given MVA $=25.13$ MVA, $13.8 \mathrm{KV}, \mathrm{X}=10 \mathrm{p} . \mathrm{u}$.

$$
\begin{aligned}
\mathrm{X}_{\mathrm{t} 1} & =0.1 \times(13.8 / 13.8)^{2} \times 50 / 25 \\
& =0.2 \text { p.u. }
\end{aligned}
$$

Transformer 2:

Voltage rating of the transformers when they are put to form a three phase transformer

$$
\begin{aligned}
& =\sqrt{3} \times 127 / 18 \mathrm{KV}=220 / 18 \mathrm{KV} \\
\mathrm{X}_{\mathrm{t} 2} & =0.1 \times(18 / 18)^{2} \times 50 / 30 \\
& =0.166 \text { p.u. }
\end{aligned}
$$

Generator 2:

Given: 30MVA, $18 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.2$
Base values: $50 \mathrm{MVA}, 18 \mathrm{KV}$

$$
\begin{aligned}
\mathrm{X}_{\mathrm{g} 2} & =0.2 \times(18 / 18)^{2} \times 50 / 30 \\
& =0.3333 \text { p.u. }
\end{aligned}
$$

Generator 3:

Given: $30 \mathrm{MVA}, 20 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.2$ p.u.
Base Values: 50MVA, 22 KV

$$
\begin{aligned}
\mathrm{X}_{\mathrm{g} 3} & =0.2 \times\left((20 / 22)^{2} \times 50 / 30\right. \\
& =0.275 \text { p.u. }
\end{aligned}
$$

Transformer 3:

$$
X_{t 3}=0.1 \times 50 / 35=0.1429 \text { p.u. }
$$

Impedance diagram:

Fig.1.19

Example 13: Figure 1.20 shows a single line diagram of an unloaded three generator power system with interconnection between the generators by means of three transformers and a transmission line with two sections, with their impedances marked on the diagram. The rating of the generator and transformer are given below:

Generator	MVA	KV	Reactance p.u.
1	30	7.7	0.3
2	20	7.7	0.20
3	35	15.4	0.20

Fig.1.20
Transformer 1: 35 MVA, $8.0 \Delta-120 \mathrm{Y}, \mathrm{X}=10 \%$
Transformer 2: $20 \mathrm{MVA}, 8.0 \Delta-120 \mathrm{Y}, \mathrm{X}=10 \%$
Transformer 3: Single phase units, each rated 15 MVA, $8.0 / 80 \mathrm{KV}, \mathrm{X}=10 \%$
Draw an impedance diagram and mark all values in p.u. choosing a base of $35 \mathrm{MVA}, 7.7 \mathrm{KV}$ in generator 1 circuit.

Solution:

Base MVA=35; Base KV=7.7KV

Generator 1:

$$
\begin{aligned}
& \mathrm{Z}_{\text {p.u new }}=\mathrm{Z}_{\text {p.u given }} \times\left(\frac{\text { Base } \mathrm{KV}_{\text {given }}}{\text { Base } K V_{\text {new }}}\right)^{2} \times\left(\frac{\text { BaseMVA }_{\text {new }}}{\text { BaseMVA }}\right) \\
& \mathrm{X}_{\mathrm{GI} 1}=0.3 \times\left(\frac{7.7}{7.7}\right)^{2} \times \frac{35}{30}=0.35 \text { p.u. }
\end{aligned}
$$

Transformer 1:

Given: $35 \mathrm{MVA}, 8 \Delta-120 \mathrm{Y} K V, \mathrm{X}=10 \%$

$$
X_{T 1}=0.1 \times\left(\frac{8.0}{7.7}\right)^{2} \times \frac{35}{35}=0.1 \times 1.0794=0.10794 \text { p.u. }
$$

Transmission line 1:

Base voltage on the transmission line with impedance $j 150 \Omega=7.7 \times \frac{12}{8}=115.5$

$$
\begin{aligned}
& \text { Base Impedance }=\left(\frac{\text { BaseKV }}{\text { BaseMVA }}\right)^{2} \\
& \text { Base Impedance }=\frac{(115.5)^{2}}{35}=381.15 \Omega \\
& \text { Per unit impedance }=\left(\frac{\text { Actual impedance }}{\text { Base impedance }}\right)
\end{aligned}
$$

$$
\text { Per unit impedance }=\frac{\mathrm{j} 150}{381.15}=\mathrm{j} 0.39354 \text { p.u. }
$$

Transmission line 2:

$$
\text { Per unit impedance }=\frac{\mathrm{jl1} 10}{381.15}=\mathrm{j} 0.2886 \text { p.u. }
$$

Transformer 2:

Given: 20MVA, $8.0 \Delta-120 \mathrm{Y} K V, \mathrm{X}=0.1$ p.u.
Base values: $35 \mathrm{MVA}, 115.5 \mathrm{KV}$

$$
\begin{aligned}
\mathrm{X}_{\mathrm{T} 2} & =0.1 \times\left(\frac{120}{115.5}\right)^{2} \times \frac{35}{20} \\
& =0.1889 \mathrm{p} . \mathrm{u} .
\end{aligned}
$$

Generator 2:

$$
\text { Base } \mathrm{KV}=115.5 \times \frac{8}{120}=7.7 \mathrm{KV}
$$

Given: $20 \mathrm{MVA}, 7.7 \mathrm{KV}, \mathrm{X}=0.20$ p.u.

$$
\mathrm{X}_{\mathrm{G} 2}=0.2 \times\left(\frac{7.7}{7.7}\right)^{2} \times \frac{35}{20}=0.35 \text { p.u. }
$$

Transformer 3:

line to line voltage when three 1- \varnothing transformer are used as a 3- \varnothing transformer is

$$
\frac{\sqrt{3}}{\sqrt{3}} \times \frac{8}{80}=\frac{13.856 \mathrm{kV}}{138.564 \mathrm{kV}}
$$

Given: 45MVA, $13.865 / 138.564 \mathrm{KV}, \mathrm{X}=0.1$ p.u.
Base values: $35 \mathrm{MVA}, 115.5 \mathrm{KV}$

$$
\mathrm{X}_{\mathrm{T} 3}=0.1 \times\left(\frac{(138.56)}{115.5}\right)^{2} \times \frac{35}{45}=0.1119 \text { p.u. }
$$

Generator 3:

$$
\text { Base } \mathrm{KV}=115.5 \times \frac{13.856}{138.564}=11.549 \mathrm{KV}
$$

Given: 35MVA, $15.4 \mathrm{KV}, \mathrm{X}=0.2$ p.u.
Base values: $35 \mathrm{MVA}, 11.549 \mathrm{KV}$

$$
\mathrm{X}_{\mathrm{G} 3}=0.2 \times\left(\frac{15.4}{11.549}\right)^{2} \times \frac{35}{35}=0.3556 \text { p.u. }
$$

Impedance diagram:

Fig.1.21
Example 14: The one line diagram of an unloaded power system is shown in Fig. 1.22. Reactance of two sections of transmission line are shown in the diagram. The generators and transformers are rated as follows:

Generator 1: 30MVA, $15.8 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.2$ p.u.
Generator 2: 40MVA, 20KV, $X^{\prime \prime}=0.2$ p.u.

Generator 3: 40MVA, $22 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.2$ p.u.
Transformer 1: $30 \mathrm{MVA}, 220 \mathrm{KV}, \mathrm{X}^{\prime \prime}=10 \%$
Transformer 2: Single phase unit each rates 10MVA, 130/20 KV, X $=10 \%$
Transformer 3: $40 \mathrm{MVA}, 220 \mathrm{Y} / 25 \mathrm{Y}$ KV, $\mathrm{X}=10 \%$
Draw the impedance diagram with all reactance marked in p.u. and with letters to indicate points corresponding to the one-line diagram. Choose a base of $60 \mathrm{MVA}, 15.8 \mathrm{KV}$ in the circuit of generator 1 .

Fig.1.22

Solution:

Base values: 60MVA, 15.8 KV

Generator 1:

$30 \mathrm{MVA}, 15.8 \mathrm{KV}, \mathrm{x}^{\prime \prime}=0.2$

$$
\begin{aligned}
& Z_{\text {p.u new }}=Z_{\text {p.u given }} \times\left(\frac{\text { Base } K V_{\text {given }}}{\text { Base } K_{\text {new }}}\right) \times\left(\frac{\text { BaseMVA }_{\text {new }}}{\text { BaseMVA }_{\text {given }}}\right) \\
& X_{\mathrm{G} 1}=0.2 \times\left(\frac{15.8}{15.8}\right)^{2} \times\left(\frac{60}{30}\right) \\
& \quad=0.4 \text { p.u. }
\end{aligned}
$$

Transmission Line 1:

Base voltage on the transmission line using the transformation ratio $=220 \mathrm{KV}$

$$
\begin{aligned}
& \text { Base impedance }=\frac{(\text { Base KV })^{2}}{\text { Base MVA }} \\
& \begin{aligned}
\text { Base impedance } & =\frac{(220)^{2}}{60} \\
& =806.67 \Omega
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\text { Per unit impedance } & =\left(\frac{\text { Actual impedance }}{\text { Base impedance }}\right) \\
& =\frac{100}{806.67}=0.1239 \mathrm{p} . \mathrm{u} .
\end{aligned}
$$

Transmission Line 2:

$$
\text { Per unit impedance }=\frac{120}{806.67}=0.1487 \text { p.u. }
$$

Transformer 1:

Base values: $60 \mathrm{MVA}, 15.8 \mathrm{KV}$
Given: 30MVA, $15.8 \mathrm{KV}, \mathrm{X}=10 \%$

$$
\begin{aligned}
& Z_{\text {p.u new }}=Z_{\text {p.u given }} \times\left(\frac{(\text { BasekVgiven })}{\text { BasekVnew }}\right)^{2} \times\left(\frac{\text { BaseMVAnew }}{\text { BaseMVAgiven }}\right) \\
& X_{T 1}=0.1 \times\left(\frac{15.8}{15.8}\right)^{2} \times\left(\frac{60}{30}\right) \\
& X_{T 1}=0.2 \mathrm{p} . \mathrm{u}
\end{aligned}
$$

Transformer 3:

$$
\begin{aligned}
\mathrm{X}_{\mathrm{T} 3} & =0.1 \times\left(\frac{220}{220}\right)^{2} \times\left(\frac{60}{40}\right) \\
& =0.15 \mathrm{p} . \mathrm{u}
\end{aligned}
$$

Transformer 2:

Voltage of the transformer when they are put to form a 3- \varnothing transformer

$$
\begin{aligned}
& =\frac{\sqrt{3}}{220} \times 130 \mathrm{KV}=\frac{225}{220} \mathrm{KV} \\
& \mathrm{X}_{\mathrm{T} 2}=0.1 \times\left(\frac{225}{220}\right)^{2} \times\left(\frac{60}{30}\right)=0.209 \text { p.u. }
\end{aligned}
$$

Generator 2:

Given: 40MVA, 20KV, $X^{\prime \prime}=0.2$
Base values: 60MVA, 19.5 KV

$$
\mathrm{X}_{\mathrm{G} 2}=0.2 \times\left(\frac{20}{19.5}\right)^{2} \times\left(\frac{60}{40}\right)=0.315 \text { p.u. }
$$

Generator 3:

Given: 40MVA, $22 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.2$
Base values: $60 \mathrm{MVA}, 25 \mathrm{KV}$

$$
X_{g 3}=0.2 \times\left(\frac{22}{25}\right)^{2} \times\left(\frac{60}{40}\right)=0.232 \text { p.u. }
$$

Impedance diagram:

Fig.1.23
Example 15: A 3 bus system is given in Fig.1.24.The ratings of the various components are listed below:

Fig.1.24

Generator 1: $40 \mathrm{MVA}, 13.8 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.2$ p.u.
Generator 2: $50 \mathrm{MVA}, 14.2 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.15$ p.u.
Generator 3: $30 \mathrm{MVA}, 12 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.25$ p.u.
Transformer 1: $50 \mathrm{MVA}, 10 \mathrm{KV} / 100 \mathrm{KV} \mathrm{Y} / \mathrm{Y}, \mathrm{X}=0.12 \mathrm{p} . \mathrm{u}$.
Transformer 2:30 MVA, $11.5 \mathrm{KV} / 110 \mathrm{KV} \mathrm{Y} / \mathrm{Y}, \mathrm{X}=0.14 \mathrm{p} . \mathrm{u}$.
Transformer 3:35 MVA, 11.5 KV/110KV Y/Y, X = 0.2p.u.
The line impedances are shown in the figure. Draw the reactance diagram based on 40 MVA and 13.8 kV as base quantities in Generator 1.

Solution:

Base MVA $=40$; Base KV $=13.8$

Generator 1:

$$
Z_{\text {p.unew }}=Z_{\text {p.u.given }} \times\left(\frac{\text { Base } K V_{\text {given }}}{\text { Base } K V_{\text {new }}}\right)^{2} \times \frac{\text { Base } M V A_{\text {new }}}{\text { Base } \mathrm{MVA}_{\text {given }}}
$$

Per unit reactance $=0.2 \times(13.8 / 13.8)^{2} \times 40 / 40=0.2$ p.u.

Transmission line 1:

Base voltage along the transmission line whose impedance is $j 40 \Omega=13.8 \times 100 / 10=138 \mathrm{KV}$

$$
\begin{aligned}
& \text { Base impedance }=\frac{(\text { Base KV })^{2}}{\text { Base MVA }} \\
& \text { Base impedance }=\frac{138^{2}}{40}=476.1 \Omega \\
& \text { Per unit impedance }=\frac{\text { Actual impedance }}{\text { Base impedance }}
\end{aligned}
$$

Per unit impedance $=40 / 476.1=0.0840$ p. . .

Generator 2:

Base Voltage $=138 \times 11.5 / 110=14 \mathrm{KV}$

$$
\begin{aligned}
\mathrm{X}_{\mathrm{G} 2} & =0.15 \times(14.2 / 14)^{2} \times 40 / 50 \\
& =0.15 \times(14.2 / 14)^{2} \times 0.8=0.1234 \text { p.u. }
\end{aligned}
$$

Transformer 1:

$50 \mathrm{MVA}, 10 \mathrm{KV} \mathrm{X}=0.12$ p.u.
Base values: $40 \mathrm{MVA}, 13.8 \mathrm{KV}$
$\mathrm{X}_{\mathrm{T} 1}=0.12 \times(10 / 13.80)^{2} \times 40 / 50=0.05040$ p. . .

Transformer 2:

$30 \mathrm{MVA}, 11.5 \mathrm{KV} \mathrm{X}=0.14$ p.u.
Base voltage on the L.T. side of the transformer $2=138 \times 11.5 / 110=14 \mathrm{KV}$

$$
X_{\mathrm{T} 2}=0.14 \times(11.5 / 14)^{2} \times 40 / 30=0.14 \times 0.674744 \times 1.3333=0.1259 \text { p.u. }
$$

Transformer 3:

Base voltage on H.T. side of the transformer 3 is 138 KV .

$$
\begin{aligned}
& X_{\mathrm{T} 3}=0.2 \times(110 / 138)^{2} \times 40 / 35 \\
& =0.2 \times 1.428571429 \times 12100 / 19044 \\
& =0.14522 \text { p.u. }
\end{aligned}
$$

Generator 3:

Base voltage on the bus $=138 \times(11.5 / 110)=14 \mathrm{KV}$
$30 \mathrm{MVA}, 12 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.25$ p.u.
Base values: $40 \mathrm{MVA}, 14 \mathrm{KV}$

$$
\begin{aligned}
& =0.25 \times(12 / 14)^{2} \times 40 / 30 \\
& =0.25 \times 144 / 196 \times 1.3333 \\
& =0.244 \text { p.u. }
\end{aligned}
$$

Transmission Line 2:

Base KV $=138$
Base MVA $=40$
Base impedance $=(138)^{2} / 40=476.1 \Omega$
Per unit impedance $=j 20 / 476.1=j 0.04200$

Reactance Diagram

Fig.1.25

Example 16: A $20 \mathrm{MVA}, 9.5 \mathrm{KV} 3-\phi$ Generator has a sub-transient reactance of 20%. It is connected through a $\Delta-\mathrm{Y}$ transformer to a high voltage transmission line having a total series reactance of 60Ω. At the load end of the line is a Y-Y step down transformer .Both transformers banks are composed of 1- ϕ transformers connected for 3- ϕ operation. Each of the two transformers comprising each bank is rated $5667 \mathrm{KVA}, 11 / 110 \mathrm{KV}$ with a reactance of 10%. The load represented as impedance is drawing $11 \mathrm{MVA}, 13.5 \mathrm{KV}$ at 70% power factor lagging. Draw the impedance diagram showing all impedances in per unit. Choose a base of $11 \mathrm{MVA}, 13.5 \mathrm{KV}$ in the load circuit.

Fig.1.26

Solution:

$\mathrm{MVA}=11 ; \mathrm{KV}=13.5$
Load impedance $=0.7+j 0.6$ p.u. (Using the formula for p.u. impedance)
Total MVA rating of the transformers 1 and 2 separately $=3 \times 5667 / 1100=15.4545$ MVA
Base KV on the transmission line side $=13.5 \times 110 \sqrt{3} / 11 \sqrt{3}=135 \mathrm{KV}$
Base impedance $=(\text { Base KV })^{2} /$ Base MVA
Base impedance in the transmission line side $=(115)^{2} / 11=1656.8181$
Per unit impedance $=\frac{\text { Actual impedance }}{\text { Base impedance }}$
Per unit impedance $=60 / 1656.8181=0.036213$

Transformer 1:

Base KV on the generator side is given by

$$
=115 \times 11 / 110 \sqrt{3}=6.6 \mathrm{KV}
$$

Therefore, per unit impedance of transformer 1 with reference to low voltage winding is given by

$$
X_{T 1}=0.1 \times(11 / 6.6)^{2} \times 11 / 15=0.2037 \text { p.u. }
$$

Generator 1:

Given, $20 \mathrm{MVA}, 9.5 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.2$

Base values: $11 \mathrm{MVA}, 6.6 \mathrm{KV}$
$X^{\prime \prime}=0.2 \times(110 \sqrt{3} / 115)^{2} \times 11 / 15=0.4025$ p.u.

Transformer 2:

Given 15 MVA, $110 \sqrt{3} \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.3$ p.u.
Base values: $11 \mathrm{MVA}, 115 \mathrm{KV}$
$\mathrm{X}_{\mathrm{T} 2}=0.3 \times(110 \sqrt{3} / 115)^{2} \times 11 / 15=0.3 \times 36300 / 13225 \times 0.73333=0.06038$ p.u.

Impedance Diagram:

j0.06038p.u. j0.0499p.u. j0.06038

Fig.1.27
Example 17: Fig. 1.28 shows a single line diagram of an unloaded three generator power system with interconnection between the generators by means of three transformers and a transmission line with two sections, with their impedances marked on the diagram. The rating of the generators and transformers are given below:
Generator 1: $30 \mathrm{MVA}, 6.9 \mathrm{KV}, \mathrm{X}^{\prime \prime}=20 \mathrm{p} \%$.
Generator 2: $20 \mathrm{MVA}, 6.9 \mathrm{KV}, \mathrm{X}^{\prime \prime}=10 \%$.
Generator 3: $35 \mathrm{MVA}, 13.4 \mathrm{KV}, \mathrm{X}^{\prime \prime}=10 \%$.

Fig.1.28

Transformer 1: $35 \mathrm{MVA}, 7.2 \Delta-120 \mathrm{YKV}, \mathrm{X}=10 \%$
Transformer 2: 20MVA, $7.2 \Delta-120 \mathrm{YKV}, \mathrm{X}=10 \%$
Transformer 3: Single phase units, each rated 10MVA, $7.9 / 79 \mathrm{KV}, \mathrm{X}=10 \%$
Draw an impedance diagram and mark all values in p.u. choosing a base of $35 \mathrm{MVA}, 6.9 \mathrm{KV}$ in the generator 1 circuit.

Solution:

Take Base MVA $=35$ and Base KV $=6.9$

Generator 1:

$$
\mathrm{X}_{\mathrm{G} 1}=0.2 \times(35 / 30) \times(6.9 \times 6.9)^{2}=0.2 \times(35 / 30)=0.233 \text { p.u. }
$$

For Transformer 1:

$$
X_{T 1}=0.1 \times(35 / 35) \times(7.2 / 6.9)^{2}=0.1088 \text { p.u. }
$$

Transmission Line 1:

Base Voltage with impedance $\mathrm{j} 110 \Omega=6.9 \times(120 / 7.2)=115 \mathrm{KV}$
\quad Now, $\quad Z_{\text {p.u. }}=Z_{\text {actual }} \times\left\{\frac{\text { Base MVA }}{(\text { Base KV })^{2}}\right\}$

$$
=110 \times\left\{35 /(115)^{2}\right\}=j 0.2911 \text { p.u. }
$$

Transmission Line 2:

Base Voltage with impedance j $80 \Omega=115 \mathrm{KV}$
Now, Per unit impedance $=Z_{\text {actual }} \times\left\{\frac{\text { Base MVA }}{(\text { Base KV })^{2}}\right\}$

$$
=80 \times\left\{35 /(115)^{2}\right\}=\text { j0.2117 p.u. }
$$

Transformer 2:

$$
X_{\mathrm{T} 2}=0.1 \times(35 / 20) \times(120 / 115)^{2}=0.1905 \text { p.u. }
$$

Generator 2:

Base $\mathrm{KV}=(115 \times 7.2) / 120=6.9 \mathrm{KV}$

$$
X_{G 2}=0.1 \times(35 / 20) \times(6.9 / 6.9)^{2}=0.175 \text { p.u. }
$$

Transformer 3:

Line to Line Voltage when three $1-\varnothing$ Transformers are used as a $3-\varnothing$ transformer is

$$
(79 \times \sqrt{3}) /(7.9 \times \sqrt{3})=136.83 / 13.68 \mathrm{KV}
$$

Base MVA in $3-\varnothing=10 \times 3=30 \mathrm{MVA}$

$$
\mathrm{X}_{\mathrm{T} 3}=0.1 \times(35 / 10) \times(136.83 / 115)^{2}=0.4954 \text { p.u. }
$$

Generator 3:

Base KV $=(115 \times 13.68) / 136.83=11.49 \mathrm{KV}$

$$
\mathrm{X}_{\mathrm{G} 3}=0.1 \times(35 / 35) \times(13.4 / 11.49)^{2}=0.1360 \text { p.u. }
$$

Impedance Diagram:

Fig.1.29
Example 18: The one line diagram of an unloaded power systems is shown in Fig. 1.30. Reactance's of the two sections of transmission line are shown in the diagram. The generators and transformers are rated as follows:
$\mathrm{G}_{1}: 25 \mathrm{MVA}, 14.8 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.2$ p.u.
$\mathrm{G}_{2}: 35 \mathrm{MVA}, 19 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.2$ p.u.
$\mathrm{G}_{3}: 35 \mathrm{MVA}, 21 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.2$ p.u.
$\mathrm{T}_{1}: 30 \mathrm{MVA}, 220 \mathrm{KV}, \mathrm{X}=10 \%$
T_{2} : Single Phase units each rated 10MVA, $127 / 18 \mathrm{KV}, \mathrm{X}=10 \%$
T_{3} : 40MVA, $220 \mathrm{Y} / 21 \mathrm{Y} \mathrm{KV} \mathrm{X}=,10 \%$
Draw the impedance diagram with all reactance's marked in p.u. and with letters to indicate points corresponding to the one-line diagram. Choose a base of $60 \mathrm{MVA}, 14.8 \mathrm{KV}$ in the circuit of generator 1 .

Fig. 1.30

Solution:

50MVA, 14.8KV - Base Values

$$
\begin{aligned}
& \mathrm{G}_{1}: \mathrm{X}_{\mathrm{G} 1}=0.2 \times\left(\frac{50}{25}\right) \times\left(\frac{14.8}{14.8}\right)^{2}=0.4 \text { p.u. } \\
& \mathrm{T} 1: \mathrm{X}_{\mathrm{T} 2}=0.1 \times\left(\frac{50}{30}\right) \times\left(\frac{14.8}{14.8}\right)^{2}=0.16 \text { p.u. }
\end{aligned}
$$

TL_{1} :
Base voltage on the transmission line $=14.8 \times\left(\frac{220}{14.8}\right)=220 \mathrm{KV}$

$$
\text { Per unit impedance }=90 \times\left(\frac{50}{220 \times 220}\right)=0.0929 \text { p.u. }
$$

$T L_{2}$:

$$
\text { Per unit analysis }=110 \times\left(\frac{50}{220 \times 220}\right)=0.1136 \text { p.u. }
$$

\mathbf{T}_{2} : Voltage rating of the transformers when they are put to form a 3- \varnothing transformer

$$
=\frac{\sqrt{3} \times 127}{18} \mathrm{kV}=\frac{207.84}{18} \mathrm{kV}
$$

MVA given for $3-\varnothing$ will be $10 \times 3=30$ MVA

$$
\mathrm{X}_{\mathrm{T} 2}=0.1 \times\left(\frac{50}{30}\right) \times\left(\frac{127 \times \sqrt{3}}{220}\right)^{2}=0.16661 \text { p.u. }
$$

$\mathbf{G}_{2}:$ Base voltage $=(220 \times 18) /(127 \times \sqrt{3})=19.05 \mathrm{KV}$

$$
\mathrm{X}_{\mathrm{G} 2}=0.2 \times\left(\frac{50}{35}\right) \times\left(\frac{19}{19.05}\right)^{2}=0.2842 \text { p.u. }
$$

For T_{3} :

$$
\begin{aligned}
& \text { Base Voltage }=220 \mathrm{KV} \\
& \mathrm{X}_{\mathrm{T} 3}=0.1 \times\left(\frac{50}{40}\right) \times\left(\frac{220}{220}\right)^{2}=0.125 \text { p.u. }
\end{aligned}
$$

G3: Base Voltage $=(220 \times 21) / 220=21 \mathrm{KV}$

$$
\mathrm{X}_{\mathrm{G} 3}=0.2 \times\left(\frac{50}{35}\right) \times\left(\frac{21}{21}\right)^{2}=0.2857 \text { p.u }
$$

Reactance Diagram:

Fig.1.31
Example 19: Two Generators rated at 11.2 MVA, 13 KV and $15 \mathrm{MVA}, 13.2 \mathrm{KV}$ are connected in parallel to a bus bar. They feed supply to two motors of input 10 MVA , and 12 MVA respectively. The Operating Voltage of motors is 11.2 KV . Assuming base quantities as 40 MVA and 14.8 KV , Draw the reactance diagram. The percentage Reactance for Generators is 13% and that for motors is 18%.

Solution:

Generator 1:

$\mathrm{Z}_{\text {p.u.given }}=0.13$, Base $\mathrm{KV}_{\text {given }}=13 \mathrm{KV}$, Base KV Actual $=14.8 \mathrm{KV}$,
Base MVA $_{\text {Actual }}=40 \mathrm{MVA}$, Base MVA ${ }_{\text {Given }}=11.2 \mathrm{MVA}$
Z p.u. new $=0.13 \times(13 / 14.8)^{2} \times 40 / 11.2=0.358218$ p.u.

Generator 2:

Zp.u.given $=0.13$, Base $\mathrm{KV}_{\text {given }}=13.2 \mathrm{KV}$, Base $\mathrm{KV}_{\text {Actual }}=14.8 \mathrm{KV}$,
Base $\mathrm{MVA}_{\text {Actual }}=40 \mathrm{MVA}$, Base $\mathrm{MVA}_{\text {given }}=15 \mathrm{MVA}$
Zp.u. ${ }_{\text {new }}=0.13 \times(13.2 / 14.8)^{2} \times 40 / 15=0.275763$ pu

Motor 1:

Zp.u.given $=0.18$, Base $\mathrm{KV}_{\text {given }}=11.2 \mathrm{KV}$, Base $\mathrm{KV}_{\text {Actual }}=14.8 \mathrm{KV}$,
Base $\mathrm{MVA}_{\text {Actual }}=40 \mathrm{MVA}$, Base $\mathrm{MVA}_{\text {given }}=10 \mathrm{MVA}$
Zp.u. ${ }_{\text {new }}=0.18 \times(11.2 / 14.8)^{2} \times 40 / 10=0.41233$ p.u.

Motor 2:

Zp.u.given $=0.18$, Base $\mathrm{KV}_{\text {given }}=11.2 \mathrm{KV}$, Base KV Actual $=14.8 \mathrm{KV}$,

Base MVA $_{\text {Actual }}=40 \mathrm{MVA}$, Base $\mathrm{MVA}_{\text {given }}=13.5 \mathrm{MVA}$
Zp.u. new $=0.18 \times(11.2 / 14.8)^{2} \times 40 / 13.5=0.305429$ p.u.

Reactance Diagram:

Fig.1.32
Example 20: Draw the Impedance Diagram for the power system shown in fig.1.33 impedance's are in pu. Neglect resistance and use a base of $40 \mathrm{KVA}, 120 \mathrm{KV}, 40 \Omega$ line. The Ratings of the generators, motors and transformers are

Generator 1: 25 MVA, 15 KV , Reactance $\%=20 \%$
Generator 2: 28 MVA, 16 KV , Reactance $\%=18 \%$
Synchronous motor 3: 33 MVA, 14.8 KV, Reactance $\%=18 \%$
3 phase Y-Y Transformers: $20 \mathrm{MVA}, 120 \mathrm{Y} / 15 \mathrm{Y}$ KV, Reactance $\%=12 \%$
3 phase Y- Δ Transformers: 18 MVA, $120 \mathrm{Y} / 15 \Delta \mathrm{KV}$ Reactance $\%=12 \%$

Fig. 1.33

Solution:

Generator 1:

Zp.u.given $=0.2$, Base $K_{V_{\text {given }}}=15 \mathrm{KV}$, Base $\mathrm{KV}_{\text {Actual }}=15 \mathrm{KV}$
Base $\mathrm{MVA}_{\text {Actual }}=40 \mathrm{KVA}$, Base $\mathrm{MVA}_{\text {given }}=25 \mathrm{MVA}$
Z p. $u_{\text {.new }}=0.2 \times(15 / 15)^{2} \times(40 / 25000)=0.00032$ pu
Transformer 1(Y-Y):
Zp.u.given $=0.12$, Base $K_{\text {given }}=15 \mathrm{KV}$, Base $\mathrm{KV}_{\text {Actual }}=15 \mathrm{KV}$,
Base MVA Actual $=40 \mathrm{KVA}$, Base $\mathrm{MVA}_{\text {given }}=20 \mathrm{MVA}$
Z p. $u_{\text {.new }}=0.12 \times(15 / 15)^{2} \times(40 / 20000)=0.00024$ p.u.

Transmission Lines:

$$
\begin{aligned}
& \text { Per unit Impedance }=\frac{\text { Actualimpedance }}{\text { Base impedance }} \\
& \text { Base Impedance }=(\text { Base KV })^{2} / \text { Base MVA } \\
& \qquad=\frac{(120)^{2} \times 1000}{40} \\
& =360000
\end{aligned}
$$

Per unit Impedance $=40 / 360000=0.000111$ p.u.
Per unit Impedance on Other Transmission Line $=20 / 360000=0.000055556$ p.u.

Generator 2:

Zp.u.given $=0.18$, Base $K_{V_{\text {given }}}=16 \mathrm{KV}$, Base $\mathrm{KV}_{\text {Actual }}=15 \mathrm{KV}$,
Base $\mathrm{MVA}_{\text {Actual }}=40 \mathrm{KVA}$, Base $\mathrm{MVA}_{\text {given }}=28 \mathrm{MVA}$
Z p.u. ${ }_{\text {new }}=0.18 \times(16 / 15)^{2} \times(40 / 28000)$

$$
=0.00029257 \text { p.u. }
$$

Transformer 2: ($\mathrm{Y}-\Delta$)
Zp.u.given $=0.12$, Base $K_{\text {given }}=15 \mathrm{KV}$, Base $K_{\text {Actual }}=15 \mathrm{KV}$,
Base MVA Actual $=40 \mathrm{KVA}$, Base MVA $_{\text {given }}=18 \mathrm{MVA}$
Zp.u. ${ }_{\text {new }}=0.12 \times(15 / 15)^{2} \times(40 / 18000)=0.000266$ p.u.

Synchronous Motor 3:

Zp.u.given $=0.18$, Base $K_{\text {given }}=14.8 \mathrm{KV}$, Base $K_{\text {Actual }}=15 \mathrm{KV}$,
Base MVA Actual $=40 \mathrm{KVA}$, Base $\mathrm{MVA}_{\text {given }}=33 \mathrm{MVA}$
Zp.u. ${ }_{\text {new }}=0.18 \times(14.8 / 15)^{2} \times(40 / 33000)=0.00021204 p u$

Fig.1.34
Example 21: A transformer having single phase is rated as $110 / 440 \mathrm{~V}, 3 \mathrm{KVA}$. L.T. side of the transformer has a leakage reactance of 0.05Ω. Calculate reactance in p.u.

Solution:

Actual leakage reactance $=0.05 \Omega$

$$
\text { Base impedance }=\frac{(\text { Base KV })^{2}}{\text { Base MVA }}
$$

$$
\begin{aligned}
\text { Base impedance in L.T. side } & =\frac{\left(110 \times 10^{-3}\right)^{2} \times 1000}{3} \\
& =4.033 \Omega
\end{aligned}
$$

Per unit impedance of the circuit element $=\frac{\text { Actual impedance }}{\text { Base impedance }}$
Per unit impedance $=\frac{0.05}{4.033}=0.01239$ p.u.
Example 22: Below diagram shows a two machine system. The ratings are as follows:
Synchronous generator: $25 \mathrm{MVA}, 11 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.17$ p.u.
Synchronous motors: $\quad 20 \mathrm{MVA}, 11 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.17 \mathrm{p} . \mathrm{u}$.
Transformer T1: $\quad 30 \mathrm{MVA}, 12.5 \Delta / 132 \mathrm{YKV}, \mathrm{X}=0.12$ p.u.
Transformer T2: $\quad 25 \mathrm{MVA}, 132 \mathrm{Y} / 11 \Delta \mathrm{KV}, \mathrm{X}=0.12$ p.u.
Line: $300+\mathrm{j} 400$
Static load: 4MVA, 0.7 Power factor lagging.

Fig. 1.35
Draw the impedance diagram for the system. Choose base voltage of 132 KV for the transmission line and a base volt ampere of 30MVA.

Solution:

Generator:

$$
\begin{aligned}
& \text { Base voltage at Generator side }=\frac{125}{132} \times 132=12.5 \mathrm{KV} \\
& \mathrm{X}^{\prime \prime}=\mathrm{j} 0.17 \times \frac{30}{25} \times\left(\frac{11}{12.5}\right)^{2}=\mathrm{j} 0.157 \text { p.u. }
\end{aligned}
$$

Transformer 1:

Here we are taking base quantities at H.T. side of transformer.

$$
\begin{aligned}
X & =j 0.12 \times \frac{30}{30} \times\left(\frac{132}{132}\right)^{2} \\
& =j 0.12 \mathrm{p} . \mathrm{u}
\end{aligned}
$$

Transformer 2:

$$
\begin{aligned}
X^{\prime \prime} & =j 0.12 \times \frac{30}{25} \times\left(\frac{132}{132}\right)^{2} \\
& =j 0.144 \text { p.u. }
\end{aligned}
$$

Motor:

Base voltage at motor side $=\frac{11}{132} \times 132=11 \mathrm{KV}$

$$
\begin{aligned}
X^{\prime \prime} & =j 0.17 \times \frac{30}{20} \times\left(\frac{11}{11}\right)^{2} \\
& =j 0.255 \mathrm{p} . \mathrm{u} .
\end{aligned}
$$

Transmission line:

$$
\begin{aligned}
& \text { Base impedance }=\frac{(\text { Base KV })^{2}}{\text { Base MVA }}=\frac{(132)^{2}}{30}=580.8 \Omega \\
& \mathrm{Z}_{\text {p.u. }}=\frac{\text { Actual impedance }}{\text { Base impedance }}=\frac{300+\mathrm{j} 40}{580.8}=0.5165+\mathrm{j} 0.688
\end{aligned}
$$

For a load of 5 MVA, 0.7 power factor lagging.

$$
\begin{aligned}
& \cos \Phi=0.7 \\
& \Phi=\cos ^{-1}(0.7)=45.57^{\circ} \\
& \mathrm{P}=\operatorname{Sos} \Phi=4 \times 0.7=2.8 \mathrm{MW} \\
& \mathrm{Q}=\sin \Phi=4 \times \sin \left(45.57^{\circ}\right)=2.86 \mathrm{MVAr}
\end{aligned}
$$

If load is represented as a series impedance,

$$
\begin{aligned}
& \mathrm{R}_{\text {p.u. }}=\mathrm{V}_{\text {p.u. }}{ }^{2} \times \mathrm{S}_{\mathrm{B}} \times \frac{\mathrm{P}}{\mathrm{P}^{2}+\mathrm{Q}^{2}} \\
& \mathrm{X}_{\text {p.u. }}=\mathrm{V}_{\text {p.u. }}{ }^{2} \times \mathrm{S}_{\mathrm{B}} \times \frac{\mathrm{Q}}{\mathrm{P}^{2}+\mathrm{Q}^{2}}
\end{aligned}
$$

Here $\quad \mathrm{V}_{\text {p.u. }}=\frac{11}{11}=$ p.u.

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{b}}=30 \mathrm{MVA} \\
& \mathrm{R}_{\text {p.u. }}=1^{2} \times 30 \times \frac{2.8}{2.8^{2}+2.86^{2}}=5.24 \text { p.u. } \\
& X_{\text {p.u. }}=1^{2} \times 30 \times \frac{2.8}{2.8+2.86^{2}}=\text { j5.35p.u. }
\end{aligned}
$$

Per unit impedance Diagram:

Fig.1.36
Example 23: Ratings of 3 generators are given below
$\mathrm{G}_{1}: 75 \mathrm{MVA}, 30 \mathrm{KV}, 9 \%$ Reactance
$\mathrm{G}_{2}: 125 \mathrm{MVA}, 31 \mathrm{KV}, 10 \%$ Reactance
$\mathrm{G}_{3}: 100 \mathrm{MVA}, 32 \mathrm{KV}, 7 \%$ Reactance
Find generator's new reactance with base values 150 MVA and 40 KV .

Solution:

$$
\mathrm{Z}_{\text {p.u. new }}=\mathrm{Z}_{\text {p.u. old }} \times\left(\frac{\text { Base } \mathrm{KV}_{\text {given }}}{\text { Base } \mathrm{KV}_{\text {Actual }}}\right)^{2} \times\left(\frac{\text { Base MVA }}{\text { Actual }}{\text { Base } \mathrm{MVA}_{\text {given }}}_{\text {Base }}^{\text {MVA }} \text { Actual }\right) \times\left(\frac{\text { Base }}{\text { Base } \mathrm{MVA}_{\text {given }}}\right)
$$

$\mathrm{G}_{1}: \mathrm{X}_{\mathrm{G} 1}=0.09 \times(30 / 40)^{2} \times(150 / 75)=0.1012$ p.u.
$\mathrm{G}_{2}: \mathrm{X}_{\mathrm{G} 2}=0.1 \times(31 / 40)^{2} \times(150 / 125)=0.0721$ p.u.
$\mathrm{G}_{3}: \mathrm{X}_{\mathrm{G} 3}=0.07 \times(32 / 40)^{2} \times(150 / 100)=0.0672$ p.u.

Example 24: Determine the generator voltage for given figure:

Fig.1.37
Solution: Assume 80MVA as Base power and 210 KV as Base voltage in transmission line.

Generator:

Base $\mathrm{KV}_{\text {new }}$ towards generator side $=$ Transformer ratio \times Base KV towards transmission line Base $K V_{\text {new }}=(11 / 220) \times 210=10.5$

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{G}}^{\prime \prime}=0.8 \times(10 / 10.5)^{2} \times(80 / 80) \\
& \mathrm{X}_{\mathrm{G}}^{\prime \prime}=0.7256 \text { p.u. }
\end{aligned}
$$

Transformer:

$$
\mathrm{X}_{\mathrm{T}}=0.2 \times(220 / 210)^{2} \times(80 / 40)=0.4390 \text { p.u. }
$$

Transmission line: Base impedance $=\frac{(\text { Base KV) }}{}{ }^{2}$ Base MVA $_{2}=\frac{210^{2}}{80}$

$$
Z_{\text {Base }}=551.25 \Omega
$$

Per unit impedance $=$ Actual impedance/Base impedance

$$
=80 / 551.25=0.1451 \text { p.u. }
$$

Resistive load 400 Ω :

$$
\mathrm{R}_{\text {p.u. }}=400 / 551.25=0.7256 \text { p.u. }
$$

Impedance diagram:

Fig.1.38
$V_{\text {p.u. }}=210 / 210=1$ p.u.
$R_{\text {p.u. }}=0.7256$ p.u.
Now, $\mathrm{I}_{\text {p.u. }}=\mathrm{V}_{\text {p.u }} / \mathrm{R}_{\text {p.u. }}=1 / 0.7256=1.3781$ p.u.
Let, $I_{\text {p.u. }}$ is reference phasor
$\mathrm{I}_{\text {p.u. }}=1.3781+\mathrm{j} 0=1.3781$ with 0^{0} angle
According to KVL, the $\mathrm{V}_{\text {drop }}$ in network $=\mathrm{I}_{\text {p.u. }}\left\{\mathrm{R}_{\text {p.u. }}+\mathrm{j}\left(\mathrm{X}_{\mathrm{G}}+\mathrm{X}_{\mathrm{T}}+\mathrm{X}_{\mathrm{TL}}\right)\right\}$

$$
\begin{aligned}
& =1.3781\{0.7256+\mathrm{j}(0.7256+0.4390+0.1451)\} \\
& =0.9999+\mathrm{j} 1.8049 \\
& =2.0634 \text { p.u. }
\end{aligned}
$$

Actual generator voltage:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{G}}=\mathrm{V}_{\text {p.u. }} \times \text { Base Voltage } \\
& \left.\mathrm{V}_{\mathrm{G}}=2.0634 \times 10.5=21.6657 \mathrm{KV} \text { (line to line }\right)
\end{aligned}
$$

Example 25: The one line diagram of an unloaded power system is shown in Fig.1.39. Reactance of the two section of transmission line are shown in the diagram. The generators and transformers ratings are as follows:
Generator 1: 30MVA, $13.8 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.1 \mathrm{pu}$
Generator 2: $20 \mathrm{MVA}, 18 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.1 \mathrm{pu}$
Generator 3: 30MVA, 20KV, $X^{\prime \prime}=0.1$ p.u.
Transformer 1: 30MVA, $13.8 / 200 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.2 \mathrm{p} . \mathrm{u}$.
Transformer 2: Single phase units each rated 50MVA, $115.4 / 18 \mathrm{KV}, X^{\prime \prime}=0.2$ p.u.
Transformer 3: $40 \mathrm{MVA}, 200 \mathrm{Y} / 22 \mathrm{YKV}, \mathrm{X}^{\prime \prime}=0.2$ p.u.
Draw the impedance diagram with all reactance marked in p.u. and with letters to indicate points corresponding to one-line diagram. Choose a base of $60 \mathrm{MVA}, 13.8 \mathrm{KV}$ in the circuit of generator 1 .

Fig.1.39

Solution:

Generator 1: 30MVA, $13.8 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.1 \mathrm{pu}$
Base $\mathrm{MVA}=60 \mathrm{MVA}$, Base $\mathrm{KV}=13.8 \mathrm{KV}$

$$
\left.\begin{array}{l}
Z_{\mathrm{p} . \mathrm{u} \text { new }}=\mathrm{Z}_{\mathrm{p} . \mathrm{u} \text { given }} \times\left(\frac{\text { Base } \mathrm{KV}_{\text {given }}}{\text { Base } \mathrm{KV}_{\text {new }}}\right)^{2} \times\left(\frac{\text { Base } \mathrm{KMVA}_{\text {new }}}{\text { BaseMVA }}\right. \text { given }
\end{array}\right)
$$

Transmission Line 1:

Base voltage on the transmission line using the transformation ratio $=200 \mathrm{KV}$.

$$
\begin{aligned}
\text { Base impedance }= & \frac{(\text { Base KV })^{2}}{\text { Base MVA }} \\
\text { Base impedance }= & \frac{(200)^{2}}{60}=666.67 \Omega \\
\text { Per unit impedance } & =\frac{\text { Actual impedance }}{\text { Base impedance }} \\
& =\frac{90}{666.67}=0.134 \mathrm{p} . \mathrm{u}
\end{aligned}
$$

Transmission Line 2:

$$
\begin{aligned}
\text { Per unit impedance } & =\frac{\text { Actual impedance }}{\text { Base impedance }} \\
& =\frac{50}{666.67}=0.0749 \mathrm{p} . \mathrm{u}
\end{aligned}
$$

Transformer 1: Base MVA $=60 \mathrm{MVA}$, Base $\mathrm{KV}=13.8 \mathrm{KV}$
Base MVA given $=30$, Base $K V_{\text {given }} 13.8 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.2 \mathrm{p} . \mathrm{u}$

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{p} . \mathrm{u} \text { new }}=\mathrm{Z}_{\mathrm{p} . \mathrm{u} \text { given }} \times\left(\frac{\left(\text { Base } \mathrm{KV}_{\text {given }}\right)}{\text { Base } \mathrm{KV}_{\text {new }}}\right)^{2} \times\left(\frac{\text { Base } \mathrm{MVA}_{\text {new }}}{\text { Base MVA given }}\right) \\
& \mathrm{X}_{\mathrm{T} 1}=0.2 \times\left(\frac{13.8}{13.8}\right)^{2} \times\left(\frac{60}{30}\right)=0.4 \text { p.u. }
\end{aligned}
$$

Transformer 3:

Base MVA $=60 \mathrm{MVA}$, Base $\mathrm{KV}=200 \times\left(\frac{22}{200}\right)=22 \mathrm{KV}$
Given: $40 \mathrm{MVA}, 220 \mathrm{Y} / 22 \mathrm{Y} K V, X^{\prime \prime}=0.2 \mathrm{p} . \mathrm{u}$

$$
\begin{aligned}
& Z_{\text {p.u new }}=Z_{\text {p.u given }} \times\left(\frac{(\text { BaseKVgiven })}{\text { BaseKVnew }}\right)^{2} \times\left(\frac{\text { BaseMVAnew }}{\text { BaseMVAgiven }}\right) \\
& X_{\mathrm{T} 3}=0.2 \times\left(\frac{22}{22}\right)^{2} \times\left(\frac{60}{40}\right) \\
& \quad=0.3 \text { p.u. }
\end{aligned}
$$

Transformer 2:

Voltage rating of transformer when they are put to form 3- Φ transformer,

$$
\begin{aligned}
& \quad=\frac{\sqrt{3}}{18} \times 115.4 \mathrm{KV}=\frac{200}{18} \mathrm{KV} \\
& \text { Base } \mathrm{KV}=\frac{18}{200} \times 200=18 \mathrm{KV} \\
& \mathrm{Z}_{\text {p.u new }}=\mathrm{Z}_{\text {p.u given }} \times\left(\frac{(\text { BaseKVgiven })}{\text { BaseKVnew }}\right)^{2} \times\left(\frac{\text { BaseMVAnew }}{\text { BaseMVAgiven }}\right) \\
& \mathrm{X}_{\mathrm{T} 2}=0.2 \times\left(\frac{18}{18}\right)^{2} \times\left(\frac{60}{50}\right)=0.24 \text { p.u. }
\end{aligned}
$$

Generator 2:

Given: 20MVA, 18KV, $X^{\prime \prime}=0.1$ p.u
Base MVA $=60 \mathrm{MVA}$, Base $\mathrm{KV}=18 \mathrm{KV}$

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{p} . \mathrm{u} \text { new }}=\mathrm{Z}_{\mathrm{p} . \mathrm{u} \text { given }} \times\left(\frac{(\text { BaseKVgiven })}{\text { BaseKVnew }}\right)^{2} \times\left(\frac{\text { BaseMVAnew }}{\text { BaseMVAgiven }}\right) \\
& \mathrm{X}_{\mathrm{G} 2}=0.1 \times\left(\frac{18}{18}\right)^{2} \times\left(\frac{60}{20}\right)=0.3 \text { p.u }
\end{aligned}
$$

Generator 3:

Given: $20 \mathrm{MVA}, 20 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.1$ p.u.
Base MVA $=60 \mathrm{MVA}$, Base KV $=22 \mathrm{KV}$

$$
\begin{aligned}
& Z_{\text {p.u new }}=Z_{\text {p.u given }} \times\left(\frac{(\text { BaseKVgiven })}{\text { BaseKVnew }}\right)^{2} \times\left(\frac{\text { BaseMVAnew }}{\text { BaseMVAgiven }}\right) \\
& X_{\mathrm{G} 3}=0.1 \times\left(\frac{20}{22}\right)^{2} \times\left(\frac{60}{20}\right)=0.247 \text { p.u }
\end{aligned}
$$

Impedance Diagram:

Fig. 1.40

Impedance Diagram:

Fig. 1.41

Example 26: A 3 bus system is given in fig.1.41. The ratings of various components are listed below.

Generator 1: $70 \mathrm{MVA}, 15.8 \mathrm{KV}, \mathrm{X}^{\prime \prime}=017$ p.u.
Generator 2: $60 \mathrm{MVA}, 15.2 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.4$ p.u.
Generator 3: $50 \mathrm{MVA}, 13 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.35$ p.u.
Transformer 1: 55MVA, $13 \mathrm{KV} / 120 \mathrm{KV} \mathrm{Y} / \mathrm{Y}, \mathrm{X}=0.2$ p.u.
Transformer 2: $35 \mathrm{MVA}, 14.5 \mathrm{KV} / 125 \mathrm{KV} \mathrm{Y} / \mathrm{Y}, \mathrm{X}=0.16$ p.u.
Transformer 3: $50 \mathrm{MVA}, 14.5 \mathrm{KV} / 125 \mathrm{KV} \mathrm{Y} / \mathrm{Y}, \mathrm{X}=0.2$ p.u.
The line impedance are shown in figure. Determine the reactance base on 70 MVA and 15.8 KV as base quantities in generator 1 .

Fig.1.42
Solution: Base MVA $=70$, Base $\mathrm{KV}=15.8$

Generator 1:

Per unit reactance $=0.17 \times(15.8 / 15.8)^{2} \times 70 / 70$

$$
=0.17 \text { p.u. }
$$

Generator 2:

Base voltage $=145.8 \times 14.5 / 125=16.9 \mathrm{KV}$
60 MVA, 15.2 KV, $\mathrm{X}^{\prime \prime}=0.4$ p.u.
Base value $70 \mathrm{MVA}, 16.9 \mathrm{KV}$

$$
\begin{aligned}
\mathrm{X}_{\mathrm{G} 2} & =0.4 \times(15.2 / 16.9)^{2} \times 70 / 60 \\
& =0.3774 \text { p.u. }
\end{aligned}
$$

Generator 3: Base voltage on the bus $=145.8 \times 14.5 / 125=16.9 \mathrm{kV}$
50MVA, $13 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.35$ p.u.
Base value 70MVA, 16.9 KV
$X_{G 3}=0.35 \times(13 / 16.9)^{2} \times 70 / 50=0.2899$ p.u.
Transformer 1: $55 \mathrm{MVA}, 13 \mathrm{KV}, \mathrm{X}=0.2 \mathrm{p} . \mathrm{u}$
Base value 70 MVA and 15.8 KV
$X_{T 1}=0.1 \times(13 / 15.8)^{2} \times 70 / 55$

$$
=0.0861 \mathrm{p} . \mathrm{u}
$$

Transformer 2: $35 \mathrm{MVA}, 14.5 \mathrm{KV}, \mathrm{X}=0.16$ p.u.
Base value $=145.8 \times 14.5 / 125=16.9 \mathrm{KV}$

$$
\begin{aligned}
\mathrm{X}_{\mathrm{T} 2} & =0.16 \times(14.5 / 16.9)^{2} \times 70 / 35 \\
& =0.2355 \mathrm{p} . \mathrm{u}
\end{aligned}
$$

Transformer 3: $50 \mathrm{MVA}, 12.5 \mathrm{KV}, \mathrm{X}=0.2$ p.u.
Base value $=16.9 \times 125 / 14.5$

$$
=145 \mathrm{KV}
$$

$$
\begin{aligned}
\mathrm{X}_{\mathrm{T} 3} & =0.2 \times(125 / 145)^{2} \times 70 / 50 \\
& =0.2080 \text { p.u. }
\end{aligned}
$$

Transmission line 1: base voltage along the transmission line whose impedance is
$j 70 \Omega=15.8 \times 120 / 13$ $=145.8 \mathrm{KV}$
Base impedance $=\frac{(\text { Base KV })^{2}}{\text { Base MVA }}$

$$
=145^{2} / 70=303.68 \Omega
$$

Per unit impedance $=\frac{\text { Actua lim pedance }}{\text { Base impedance }}$

$$
=70 / 303.68=0.2305 \mathrm{p} . \mathrm{u}
$$

Transmission line 2: Base $\mathrm{KV}=145.8$, Base $\mathrm{MVA}=70$
Base impedance $=$ j 37.5/303.68

$$
=\mathrm{j} 0.1152 \mathrm{p} . \mathrm{u}
$$

Fig.1.43
Example 27: A $25 \mathrm{MVA}, 9.5 \mathrm{KV}, 3-\Phi$ generator has subtransient reactance of 20%. It is connected through a $\Delta-\mathrm{Y}$ transformer to a high voltage transmission line having a total series reactance of 70Ω. At the load end of the line is a Y-Y step down transformer. Both transformer banks are composed of 1- Φ transformers connected for $3-\Phi$ operation. Each of the two transformers comprising each bank is rated $7682 \mathrm{KVA}, 10 / 100 \mathrm{KV}$ with reactance of 10%. The load represented as impedance is drawing 12 MVA at 14.5 KV at 80% power factor lagging. Draw the impedance diagram showing all impedance in per unit. Choose a base of $12 \mathrm{MVA}, 14.5 \mathrm{KV}$ in the load circuit.

Fig.1.44

Solution:

Load:
$\mathrm{MVA}=12, \mathrm{KV}=14.5$
Load impedance $=0.8+$ j o. 6 p.u.
Total MVA rating of transformer 1 and 2 separately $=3 \times 7628 / 1000$

$$
=23 \mathrm{MVA}
$$

Base KV on the transmission line side $=14.5 \times \frac{100 \sqrt{3}}{10 \sqrt{3}}$

$$
=145 \mathrm{KV}
$$

Base impedance $=(\text { Base KV })^{2} /$ Base MVA
Base impedance in the transmission line $=145^{2} / 12$

$$
=1752.08 \Omega
$$

Per unit impedance $=$ Actual impedance $/$ Base impedance

$$
=70 / 1752.08=0.0399 \text { p.u. }
$$

Transformer 1: Base KV on the generator side is given by

$$
\begin{aligned}
& \quad=145 \times 10 / 100 \sqrt{3}=8.3 \mathrm{KV} \\
& \mathrm{X}_{\mathrm{T} 1}=0.1 \times(10 / 8.3)^{2} \times(12 / 23) \\
&= 0.075 \mathrm{p} . \mathrm{u}
\end{aligned}
$$

Generator 1: given $25 \mathrm{MVA}, 9.5 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.2$ p.u.
Base value $=12 \mathrm{MVA}, 8.3 \mathrm{KV}$

$$
\begin{aligned}
\mathrm{X}^{\prime \prime} & =0.2 \times(9.5 / 8.3)^{2} \times(12 / 25) \\
& =\text { j } 0.1257 \mathrm{p} . \mathrm{u}
\end{aligned}
$$

Transformer 2: given $23 \mathrm{MVA}, 100 \sqrt{3} \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.1$ p.u.
Base value $=12 \mathrm{MVA}, 145 \mathrm{KV}$

$$
\begin{aligned}
\mathrm{X}_{\mathrm{T} 2} & =0.1 \times(100 \sqrt{3} / 145)^{2} \times 12 / 23 \\
& =0.0743 \mathrm{p} . \mathrm{u}
\end{aligned}
$$

Fig.1.45

Example 28: A $200 \mathrm{MVA}, 44 \mathrm{KV}, 3-\phi$ generator has a subtransient reactance of 25%. The generator is connected to three motors through a transmission line and two Transformers. Each motor have rated 40MVA with 30% subtransient reactance. The $3-\phi$ transformers are rated at $110 \mathrm{MVA}, 32 \mathrm{KV} / 110 \mathrm{KV}$ with leakage reactance 9%. The line has a reactance of 50 ohms. Selecting the generator rating as the base quantities in the generator circuit, determine the base quantities in other parts of the system and evaluate the corresponding p.u. values.

Solution:

The base voltage in the transmission line $=44 \times 110 / 32=151.25 \mathrm{KV}$
In the motor circuit, the base voltage $=151.25 \times 32 / 110=44 \mathrm{KV}$
Base impedance in the transmission line $=(\text { Base KV })^{2} /$ base MVA

$$
=(151.25)^{2} / 200=114.382 \Omega
$$

p.u. impedance $=\mathrm{j} 50 / \mathrm{j} 114.382=0.4371$ p.u.

Motor 1:

$$
\begin{aligned}
& 40 \mathrm{MVA}, 44 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.3 \\
& \quad X_{1}^{\prime \prime}=0.3 \times(40 / 44)^{2} \times 200 / 40=0.4371 \text { p.u. }
\end{aligned}
$$

Motor 2:

30MVA, $40 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.3$

$$
X_{2}^{\prime \prime}=0.3 \times(40 / 44)^{2} \times 200 / 30=1.6528 \text { p.u. }
$$

Motor 3:

60MVA, $40 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.3$

$$
X_{3}^{\prime \prime}=0.3 \times(40 / 44)^{2} \times 200 / 60=0.8264 \text { p.u. }
$$

Transformer:

110MVA, $32 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.09$

$$
\begin{aligned}
\mathrm{X}_{\mathrm{T}}^{\prime \prime} & =0.09 \times(32 / 44)^{2} \times 200 / 110 \\
& =0.0865 \text { p.u. }
\end{aligned}
$$

Example 29: Fig. 1.45 shows a two machine system. The ratings are as follows:
Synchronous generator: $30 \mathrm{MVA}, 11 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.25$ p.u.
Synchronous motor: $25 \mathrm{MVA}, 11 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.25$ p.u.
Transformer $\mathrm{T}_{1}=35 \mathrm{MVA}, 13.5 \Delta / 132 \mathrm{Y}$ KV, $\mathrm{X}=0.2 \mathrm{p} . \mathrm{u}$
Transformer $\mathrm{T}_{2}=30 \mathrm{MVA}, 132 \mathrm{Y} / 11 \Delta \mathrm{KV}, \mathrm{X}=0.2 \mathrm{p} . \mathrm{u}$
Line: $100+\mathrm{j} 400 \Omega$
Static load: 10MVA, 0.75 power factor lagging.

Draw the impedance diagram for the system. Choose a base voltage of 132 KV for the transmission line and a base volt ampere of 30MVA.

Fig.1.46

Solution:

Generator:

$$
X^{\prime \prime}=j 0.25 \times 30 / 30 \times(11 / 13.5)^{2}=\mathrm{j} 0.1659 \text { p.u. }
$$

Transformer 1:

$$
\mathrm{X}=\mathrm{j} 0.2 \times 30 / 35 \times 132 / 132=\mathrm{j} 0.1714 \text { p.u. }
$$

Transformer 2:

$$
\mathrm{X}^{\prime \prime}=\mathrm{j} 0.2 \times 30 / 30 \times(132 / 132)^{2}=\mathrm{j} 0.2 \text { p.u. }
$$

Motor:

$$
\mathrm{X}^{\prime \prime}=0.25 \times 30 / 25 \times(11 / 11)^{2}=0.3 \text { p.u. }
$$

Transmission line:

$$
\begin{aligned}
\text { Base impedance } & =\frac{(\text { Base KV })^{2}}{\text { Base MVA }} \\
& =132^{2} / 30=580.8 \Omega
\end{aligned}
$$

$$
Z_{\text {p.u. }}=\frac{\text { Actualimpedance }}{\text { Base impedance }}
$$

$$
\begin{aligned}
& =100+\mathrm{j} 400 / 580.8 \\
& =0.172+\mathrm{j} 0.688
\end{aligned}
$$

For a load of 10MVA, 0.75 power factor lagging,

$$
\begin{aligned}
& \mathrm{P}=\mathrm{S} \cos \phi=10 \times 0.75=7.5 \mathrm{MW} . \\
& \mathrm{Q}=\mathrm{S} \sin \phi=10 \times 0.66=6.6 \mathrm{MVAr}
\end{aligned}
$$

If load is represented as a series impedance,

$$
\mathrm{R}_{\mathrm{p} \cdot \mathrm{u}}=\frac{\mathrm{V}_{\mathrm{p} . \mathrm{u}}{ }^{2} \cdot \mathrm{~S}_{\mathrm{b}} \cdot \mathrm{P}}{\mathrm{P}^{2}+\mathrm{Q}^{2}} \text { and } \mathrm{X}_{\mathrm{p} . \mathrm{u}}=\frac{\mathrm{V}_{\mathrm{p} . \mathrm{u}}{ }^{2} \cdot \mathrm{~S}_{\mathrm{b}} \cdot \mathrm{Q}}{\mathrm{P}^{2}+\mathrm{Q}^{2}}
$$

Here, $V_{\text {p.u. }}=11 / 11=1$ p.u
$\mathrm{S}_{\mathrm{b}}=30 \mathrm{MVA}$
Therefore, $\quad \mathrm{R}_{\mathrm{p} . \mathrm{u}}=\frac{(1.0)^{2} \times 30 \times 7.5}{(7.5)^{2}+(6.6)^{2}}=2.25$ p.u.

$$
X_{p . u}=\frac{(1.0)^{2} \times 30 \times 6.6}{(7.5)^{2}+(6.6)^{2}}=1.983 \text { p.u. }
$$

P.U. impedance diagram:

Fig.1.47
Example 30: Three generators are rated as follows
Generator 1: $120 \mathrm{MVA}, 32 \mathrm{KV}$, reactance 9%.
Generator 2: $140 \mathrm{MVA}, 30 \mathrm{KV}$, reactance 7%.
Generator 3: $160 \mathrm{MVA}, 29 \mathrm{KV}$, reactance 10%.
Determine the reactance of the generators corresponding to base values of 250 MVA and 40KV.

Solution:

Generator 1:

120MVA, $32 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.09$
$Z_{\text {p.u.new }}=Z_{\text {p.u.given }} \times\left(\frac{\text { Base KVgiven }}{\text { Base KVnew }}\right)^{2} \times\left(\frac{\text { Base KMVAnew }}{\text { Base MVAgiven }}\right)$

$$
X^{\prime \prime}=0.09 \times(32 / 40)^{2} \times 250 / 120
$$

$$
\begin{aligned}
& =0.09 \times 0.64 \times 2.083 \\
& =0.1199 \text { p.u. }
\end{aligned}
$$

Generator 2:

$$
\begin{aligned}
& \text { 140MVA, } 30 \mathrm{kV}, \mathrm{X}^{\prime \prime}=0.07 \\
& \mathrm{Z}_{\text {p.u.new }}=\mathrm{Z}_{\text {p.u.given }} \times\left(\frac{\text { Base KVgiven }}{\text { Base KVnew }}\right)^{2} \times\left(\frac{\text { Base KMVAnew }}{\text { Base MVAgiven }}\right) \\
& \mathrm{X}^{\prime \prime}=0.07 \times(30 / 40)^{2} \times 250 / 140 \\
&=0.07 \times 0.5625 \times 1.785 \\
&=0.0702 \text { p.u }
\end{aligned}
$$

Generator 3:

$160 \mathrm{MVA}, 29 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.1$

$$
\begin{aligned}
Z_{\text {p.u.new }}= & Z_{\text {p.u.given }} \times\left(\frac{\text { Base KVgiven }}{\text { Base KVnew }}\right)^{2} \times\left(\frac{\text { Base KMVAnew }}{\text { Base MVAgiven }}\right) \\
X^{\prime \prime} & =0.1 \times(29 / 40)^{2} \times 250 / 160 \\
& =0.1 \times 0.5256 \times 1.5625 \\
& =0.0821_{\text {p.u. }}
\end{aligned}
$$

Example 31: Determine the generator voltage for the network as shown in the figure below.

Fig.1.48

Solution:

Let us assume a Base value of the transmission line is $95 \mathrm{MVA} \& 200 \mathrm{KV}$.
Generator: Base voltage of the Generator: $(10 / 195) \times 200 \mathrm{kV}=10.2564 \mathrm{kV}$

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{p} . \mathrm{u} . \text { new }}= & \mathrm{Z}_{\text {p.u.given }} \times\left(\frac{\text { Base KVgiven }}{\text { Base KVnew }}\right)^{2} \times\left(\frac{\text { Base MVAnew }}{\text { Base MVAgiven }}\right) \\
\mathrm{X}_{\mathrm{G}}^{\prime \prime}= & 0.65 \times 95 / 65 \times(10 / 10.2564)^{2} \\
& =0.65 \times 1.4615 \times 0.9506 \\
& =0.90304 \mathrm{p} . \mathrm{u} .
\end{aligned}
$$

Transformer:

$$
\begin{aligned}
& X_{T}=0.2 \times 95 / 45 \times(195 / 200)^{2} \\
& =0.2 \times 2.111 \times 0.9506 \\
& =0.4013 \text { p.u. }
\end{aligned}
$$

Transmission Line:

$$
\begin{aligned}
\text { Base impedance }= & \frac{(\text { Base KV })^{2}}{\text { Base MVA }} \\
= & (200)^{2} / 95 \\
= & 40000 / 95 \\
= & 421.05 \Omega
\end{aligned}
$$

$$
\text { Per unit impedance }=\frac{\text { Actuallimpedance }}{\text { Base impedance }}
$$

$$
\begin{aligned}
& =95 / 421.05 \\
& =0.225 \mathrm{p} . \mathrm{u}
\end{aligned}
$$

Resistive load of 400Ω :

$$
\begin{aligned}
\mathrm{R}_{\mathrm{P} . \mathrm{U}} & =400 / 421.05 \\
& =0.95 \mathrm{p} . \mathrm{u} .
\end{aligned}
$$

Impedance diagram:

Fig. 1.49
At the load bus,

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{p} . \mathrm{u}}=1 \mathrm{p} . \mathrm{u} . \\
& \mathrm{R}_{\mathrm{p} . \mathrm{u} .}=0.95 \mathrm{p} . \mathrm{u} .
\end{aligned}
$$

Therefore,

$$
\mathrm{I}_{\mathrm{p} . \mathrm{u} .}=\mathrm{V}_{\mathrm{p} . \mathrm{u} .} / \mathrm{R}_{\mathrm{p} . \mathrm{u} .}
$$

$$
\begin{aligned}
& =1 / 0.95 \\
& =1.052 \mathrm{p} . \mathrm{u} .
\end{aligned}
$$

Let us take $\mathrm{I}_{\text {p.u. }}$ as the reference phasor.

$$
\begin{aligned}
\mathrm{I}_{\mathrm{p} . \mathrm{u}} & =1.052 \mathrm{p} \cdot \mathrm{u}+\mathrm{j} 0 \\
& =1.052 \text { with angle } 0^{0}
\end{aligned}
$$

Applying KVL, the voltage drop in the network

$$
\begin{aligned}
& =\mathrm{I}_{\mathrm{p} . \mathrm{u}}\left[\mathrm{R}_{\mathrm{p} . \mathrm{u}}+\mathrm{j}\left(\mathrm{X}_{\mathrm{G}}+\mathrm{X}_{\mathrm{t}}+\mathrm{X}_{\mathrm{L}}\right)\right] \\
& =1.052[0.95+\mathrm{j}(0.90304+0.4013+0.225)] \\
& =1.052[0.95+\mathrm{j} 1.52934] \\
& \quad=1.052 \times 1.8003 \\
& \quad=1.8939 \text { p.u. }
\end{aligned}
$$

Actual generator terminal voltage,
$\mathrm{V}_{\mathrm{G}}=\mathrm{V}_{\mathrm{p} . \mathrm{u}} \times$ Base voltage at the generator terminals

$$
=1.8939 \times 10.2564
$$

$$
=19.425 \mathrm{kV}(\text { Line to Line })
$$

Example 32: A 3 bus system is given in figure. The ratings of the various components are listed below:

Fig.1.50
Generator 1: $40 \mathrm{MVA}, 12.8 \mathrm{kV}, \mathrm{X} "=0.2_{\text {p.u }}$
Generator 2: $50 \mathrm{MVA}, 12.2 \mathrm{Kv}, \mathrm{X}^{\prime \prime}=0.15_{\text {p.u }}$
Generator 3: $20 \mathrm{MVA}, 12 \mathrm{Kv}, \mathrm{X} "=0.20_{\text {p.u }}$
Transformer 1: $40 \mathrm{MVA}, 12 \mathrm{kV} / 100 \mathrm{kV} \mathrm{Y} / \mathrm{Y}, \mathrm{X}=0.1_{\mathrm{p} . \mathrm{u}}$
Transformer 2: $20 \mathrm{MVA}, 13.5 \mathrm{kV} / 125 \mathrm{kV}$ Y/Y,X $=0.20_{\text {p.u }}$
Transformer 3: $35 \mathrm{NVA}, 10.5 \mathrm{Kv} / 115 \mathrm{kV} \mathrm{Y} / \mathrm{Y}, \mathrm{X}=0.2_{\text {p.u }}$

The line impedances are shown in figure 50. Determine the reactance diagram based on 40 MVA and 12.8 kV as base quantities in generator 1 .

Solution:

Base $\mathrm{MVA}=40$; BasekV $=12.8$

Generator 1:

$Z_{\text {p.u.new }}=Z_{\text {p.u.given }}(\text { Base } k V \text { given } / \text { Base } k V \text { new })^{2} x$ Base $M V A_{\text {new }} /$ Base MVAgiven
Per Unit Reactance $=0.2 \times(12.8 / 12.8)^{2} \times(40 / 40)$

$$
=0.0156_{\mathrm{p} . \mathrm{u}}
$$

Transmission Line 1:

Base voltage along the transmission line whose impedance is $\mathrm{j} 40 \Omega=12.8 \times 100 / 12=106 \mathrm{kV}$
Base impedance $=(\text { Base kV })^{2} /$ Base MVA
Base impedance $=106^{2} / 40=280.9 \Omega$
Per unit impedance $=40 / 280.9=0.1423_{\text {p.u }}$

Generator 2:

Base voltage $=106 \times 12.5 / 10.5=12 \mathrm{kV}$

$$
\begin{aligned}
\mathrm{X}_{\mathrm{G} 2} & =0.15 \times(12.2 / 12)^{2} \times 40 / 50 \\
& =4.4652 \mathrm{p} . \mathrm{u}
\end{aligned}
$$

Transformer 1:

40MVA, $12 \mathrm{Kv}, \mathrm{X}=0.1_{\text {p.u }}$
Base values; $40 \mathrm{MVA}, 12.8 \mathrm{Kv}$

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{T} 2}=0.1 \times(12 / 12.8)^{2} \times 40 / 40 \\
& =0.0878_{\mathrm{p} . \mathrm{u}}
\end{aligned}
$$

Transformer 2:

20MVA, $11.5 \mathrm{Kv}, \mathrm{X}=0.20_{\text {p.u }}$
Base Voltage $=106 \times 13.5 / 125=11 \mathrm{kv}$

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{T} 2}=0.1 \mathrm{X}(11.5 / 11)^{2} \times 40 / 20 \\
& \quad=0.2185_{\mathrm{p} . \mathrm{u}}
\end{aligned}
$$

Transformer 3:

Base Voltage on the H.T side of transformer 3 is 106 kv

$$
\begin{aligned}
\mathrm{X}_{\mathrm{T} 3} & =0.2 \times(115 / 108)^{2} \times 40 / 35 \\
& =0.25916 \mathrm{P} . \mathrm{U}
\end{aligned}
$$

Generator 3:

Base voltage on the bus $=106 \times 13.5 / 125=11 \mathrm{kv}$
$20 \mathrm{MVA}, 12 \mathrm{kV}, \mathrm{X"}=0.20 \mathrm{p} . \mathrm{u}$
Base value: $40 \mathrm{MVA}, 11 \mathrm{kv}$

$$
\begin{aligned}
\mathrm{X}_{\mathrm{G} 3} & =0,20 \times(12 / 11)^{2} \times 40 / 20 \\
& =0.476 \mathrm{P} . \mathrm{U}
\end{aligned}
$$

Transmission line 2:

Base kV =106
Base MVA $=40$
Base impedance $=106^{2} / 40=280.9$
Per unit impedance $=\mathrm{j} 20 / 280.9=\mathrm{j} 0.0711$
Reactance Diagram:

Fig.1.51
Example 33: Draw the impedance for the power system shown in fig. 1.49. Impedances are in p.u. Neglect resistances. Use a base of $45 \mathrm{kVA}, 148 \mathrm{KV}, 20 \Omega$ line. The ratings of the generators, motors and transformers are:

Fig. 1.52
Generator 1: $25 \mathrm{MVA}, 18 \mathrm{KV}, \mathrm{X}^{\prime \prime}=20 \%$
Generator 2: $25 \mathrm{MVA}, 18 \mathrm{KV}, \mathrm{X}^{\prime \prime}=20 \%$
Synchronous motor 3; 35 MVA, $12.8 \mathrm{KV}, \mathrm{X}^{\prime \prime}=20 \%$
Three phase Y-Y Transformers: $10 \mathrm{MVA}, 128 \mathrm{Y} / 20 \mathrm{YKV}, \mathrm{X}=10 \%$
Three phase Y- Δ Transformers: $10 \mathrm{MVA}, 128 \mathrm{Y} / 12.8 \Delta \mathrm{KV}, \mathrm{X}=10 \%$

Solution:

Generator 1:

Given: $25 \mathrm{MVA}, 18 \mathrm{KV}, \mathrm{X}^{\prime \prime}=20 \%$
Base values: 45 KVA

$$
\mathrm{Z}_{\mathrm{p} . \mathrm{unew}}=\mathrm{Z}_{\mathrm{p} . \mathrm{ugiven}} \times\left(\frac{\text { Base KVgiven }}{\text { Base KVnew }}\right)^{2} \times\left(\frac{\text { Base KMVAnew }}{\text { Base MVAgiven }}\right)
$$

$\mathrm{X}_{\mathrm{G} 1}=0.2 \times(18 / 20)^{2} \times\left(45 / 20 \times 10^{3}\right)$

$$
=0.000364 \mathrm{P} . \mathrm{U}
$$

Transformer 1:

Given: $25 \mathrm{MVA}, 20 \mathrm{KV}, \mathrm{X}=10 \%$
Base values; $45 \mathrm{KVA}, 20 \mathrm{KV}$
$\mathrm{X}_{\mathrm{T} 1}=0.1 \times\left(45 / 20 \times 10^{3}\right)=0.00025 \mathrm{P} . \mathrm{U}$

Transmission Lines:

$$
\text { Base impedance }=\frac{(\text { Base KV })^{2}}{\text { Base MVA }}
$$

$$
\begin{aligned}
\text { Base impedance } & =148^{2} / 40 \times 1000 \\
& =547600 \Omega
\end{aligned}
$$

$$
\text { Per unit impedance }=\frac{\text { Actual impedance }}{\text { Base impedance }}
$$

p.u impedance $=0.0000821$ P.U
p.u impedance of the other transmission line $=20 / 547600$

$$
=0.0000807 \mathrm{P} . \mathrm{U}
$$

Generator 2:

$$
\mathrm{X}_{\mathrm{G} 2}=\mathrm{X}_{\mathrm{G} 1}=0.0003645 \text { P.U }
$$

Y- Δ transformer
Given: 10MVA, 128Y/12.8 $\Delta \mathrm{KV}, \mathrm{X}=10 \%$
Base values; $45 \mathrm{kVA}, 128 \mathrm{KV}$

$$
\begin{aligned}
\mathrm{X} & =\left(0.1 \times 45 / 10 \times 10^{3}\right) \\
& =0.000045 \text { P.U }
\end{aligned}
$$

Motor:

Given: $35 \mathrm{MVA}, 12.8 \mathrm{KV}, \mathrm{X}^{\prime \prime}=20 \%$
Base values: $45 \mathrm{KVA}, 128 \mathrm{KV}$

$$
\begin{aligned}
\mathrm{X}_{\mathrm{m}} & =0.2 \times 45 / 35 \times 10^{3} \\
& =0.0000257 \mathrm{P} . \mathrm{U}
\end{aligned}
$$

Impedance diagram

Fig.1.53

Exercise

Multiple Choice Questions

1. What is the value of base impedance for a $20 \mathrm{kV}, 100 \mathrm{MVA}, 3-\phi$ System?
a) 5Ω
b) 7Ω
c) 4Ω
d) $1 \mathrm{k} \Omega$
2. In a system, base quantities are 40 kV and 200 MVA . What the value of p.u. admittance of j0.7S?
a) j 4 S
b) j 5.6 S
c) j 5.9 S
d) j 6.4 S
3. What is the per unit synchronous reactance on the base value of 300 MVA and 30 kV if a 200 MVA with 40 kV synchronous generator has 2 p.u synchronous reactance.
a) 5.33 pu
b) 5.56 pu
c) 5.79 pu
d) 5.2 pu
4. Which one is correct: Per unit impedance of a transformer is \qquad
a) higher if calculated from primary side than from secondary side.
b) both are same whether calculate from primary side or secondary side.
c) always zero.
d) always unity
5. A synchronous machine's p.u. value is 0.484 . What will the p.u. value be if the base voltage is increased by 1.5 times?
a) 0.266
b) 0.242
c) 0.220
d) 0.215
6. A synchronous generator is capable of operating at $21 \mathrm{kV}, 50 \mathrm{MVA}$ and 50 Hz . The generator's base impedance is going to be
a) 8.82Ω
b) 8.9Ω
c) 8.1Ω
d) 8.25Ω
7. The synchronous reactance of an $22 \mathrm{kV}, 300 \mathrm{MVA}$ synchronous generator is $0.5 \mathrm{p} . \mathrm{u}$. According to the basis values of 200 MVA and 11 kV , the p.u. synchronous reactance is
a) 1.64
b) 1.33
c) 1.43
d) 1.54
8. For a 275MVA machine operating on its own base, the p.u. parameters are inertia $\mathrm{M}=$ 13 pu and reactance $X=9$ pu. On a 70 MVA common base, the pu values for inertia and reactance will be
a) $51.07,2.29$
b) $40,1.9$
c) $60,3.4$
d) 49,10
9. A circuit element has a per-unit impedance of 0.25 . The new value of the per-unit impedance of the circuit element will be if the base kV is reduced by one third and the base MVA is reduced by half
a) 1.161
b) 1.125
c) 1.191
d) 1.233
10. The per unit impedance value of an element is represented by X for a given base voltage and base volt ampere. What will this element's per-unit impedance value be if the voltage and volt-amp bases are both doubled?
a) 2 X
b) 4 X
c) 0.5 X
d) X

Answers

1. (c),
2. (b), 3. (a),
3. (b),
4. (d),
5. (a), 7. (b),
6. (a),
7. (b), 10. (c)

Subjective Questions

1. What are the advantages of Per Unit system?
2. Three generators are rated as follows:

Generator 1 - 120 MVA, 40 KV , reactance 14%.
Generator 2-170 MVA, 35KV, reactance 9\%.
Generator 3 - 140 MVA, 31 KV , reactance 16%.
Determine the reactance of the generator corresponding to base values of 250 MVA and 45 KV .
3. A 3 bus system is given in fig.1.51. The ratings of the various components are listed below:

Generator 1: 50 MVA, $13.8 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.4$ P.U
Generator 2: $60 \mathrm{MVA}, 12 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.25 \mathrm{P} . \mathrm{U}$
Generator 3: $40 \mathrm{MVA}, 11 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.30 \mathrm{P} . \mathrm{U}$
Transformer 1: $50 \mathrm{MVA}, 10 \mathrm{KV} / 100 \mathrm{KV} \mathrm{Y} / \mathrm{Y}, \mathrm{X}=0.24 \mathrm{P} . \mathrm{U}$
Transformer 2: $30 \mathrm{MVA}, 11.5 \mathrm{KV} / 110 \mathrm{KV} \mathrm{Y} / \mathrm{Y}, \mathrm{X}=0.30 \mathrm{P} . \mathrm{U}$
Transformer 3: $35 \mathrm{MVA}, 11.5 \mathrm{KV} / 110 \mathrm{KV}$ Y/Y, X = 0.5 P.U

Fig.1.54

The line impedances are shown in the figure. Determine the reactance diagram based on 50 MVA and 13.8 KV as base quantities in Generator 1.
4. Two Generators rated at $15 \mathrm{MVA}, 13 \mathrm{KV}$ and $20 \mathrm{MVA}, 13.2 \mathrm{KV}$ are connected in parallel to a bus bar. They feed supply to two motors of input 10 MVA , and 12 MVA respectively. The Operating Voltage of motors is 11.2 KV . Assuming base quantities as 25 MVA and 15 KV , Draw the reactance diagram. The percentage Reactance for Generators is 13% and that for motors is 20%.
5. Ratings of 3 generators are given below:
$\mathrm{G}_{1}: 125$ MVA, $20 \mathrm{KV}, 9 \%$ Reactance
$\mathrm{G}_{2}: 100 \mathrm{MVA}, 35 \mathrm{KV}, 10 \%$ Reactance
$\mathrm{G}_{3}: 150 \mathrm{MVA}, 30 \mathrm{KV}, 7 \%$ Reactance
Find generator's new reactance with base values 150 MVA and 40 KV .
6. A $300 \mathrm{MVA}, 44 \mathrm{KV}, 15 \%, 3-\phi$ generator has a subtransient reactance of 20%. The generator is connected to three motors through a transmission line and two Transformers. The motors have rated inputs of $50 \mathrm{MVA}, 20 \mathrm{MVA}$ and 70 MVA with 30% subtransient reactance. The $3-\phi$ transformers are rated at $100 \mathrm{MVA}, 32 \mathrm{KV} / 110 \mathrm{KV}$ with leakage reactance 7%. The line has a reactance of 40 ohms. Selecting the generator rating as the base quantities in the generator circuit, determine the base quantities in other parts of the system and evaluate the corresponding p.u. values.
7. Three generators are rated as follows

Generator $1-100 \mathrm{MVA}, 30 \mathrm{KV}$, reactance 9%.
Generator 2-150MVA, 35 KV , reactance 11%.
Generator 3-200MVA, 40KV, reactance 12%.
Determine the reactance of the generators corresponding to Base values of 200MVA and 40KV.

