
Chapter 1

Origin

Perturbation theory comprises mathematical methods for finding an
approximate solution to a problem, by starting from the exact solution
of a related, simpler problem. A critical feature of the technique is a
middle step that breaks the problem into ”solvable” and ”perturbation”
parts. Perturbation theory is applicable if the problem at hand cannot
be solved exactly, but can be formulated by adding a ”small” term to the
mathematical description of the exactly solvable problem.

Perturbation theory leads to an expression for the desired solution in
terms of a formal power series in some ”small” parameter - known as
a perturbation series - that quantifies the deviation from the exactly
solvable problem. The leading term in this power series is the solution of
the exactly solvable problem, while further terms describe the deviation
in the solution, due to the deviation from the initial problem. Formally,
we have for the approximation to the full solution A, a series in the small
parameter.

If A0 would be the known solution to the exactly solvable problem and
A1, A2, . . . represents the higher-order terms which may be found it-
eratively by some systematic procedure, for small ϵ these higher-order
terms in the series becomes successively smaller. Furthermore, if the
small parameter is zero, then the given equation is exactly solvable, and
the problem is reduced to finding the asymptotic behavior of the best
approximation to the true solution.

An approximate ”perturbation solution” is obtained by truncating the
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series, usually by keeping only the first two terms, the initial solution
and the ”first order” perturbation correction. If truncated after first
term then it is termed as ”second order” perturbation correction.[1]

1.1 Historical Development

Initially, Perturbation theory was proposed for the solution of problems
in celestial mechanics, particularly to study the motions of planets in the
solar system, As the mass of each planet is very less as compared to that
of the Sun and the planets are very remote from each other, the gravi-
tational forces between the planets can be neglected, and the planetary
motion is taken into consideration to the first approximation as taken
along Kepler’s orbits (Appendix - A 1.7.1), which are defined by the
equations of the two-body problem (Appendix - A 1.7.2), the two bodies
being the planet and the Sun. The solution to the two-body problem can
be obtained using Kepler’s law which suggests that the point mass planet
moves on an elliptical path with the Sun at one of the two foci.

The dynamics become extremely complicated when gravitational influ-
ence from any other body is added. Since the available astronomical
data is of high accuracy, considering how the motion of a planet around
the Sun is affected by other planets becomes necessary. This was the
origin of the three-body problem (Appendix - B 1.8.1); thus, in studying
the system Moon-Earth-Sun the mass ratio between the Moon and the
Earth was chosen as the small parameter. Later Poincare[2] showed that
the three-body problem does not admit a sufficient number of prime in-
tegrals which allow to integration problem. This gave rise to the concept
of restricted three body problem.

J. L. Lagrange (25 January 1736 - 10 April 1813), and P. Laplace (23
March 1749 - 05 March 1827) were the first ones to progress over the
view that the constants describing the motion of the planet around the
sun are perturbed, as they were due to the motion of the other planets.
The constants vary as a function of time, hence the name Perturbation
theory. Perturbation theory focuses on finding an approximate solution
of nearly- integrable systems, i. e., systems which consists of an inte-
grable part and a small perturbation. The core aspect of this theory is
to construct a canonical transformation which eliminates the perturba-
tion of higher orders. A typical example of a nearly-integrable system
is provide by two-body problem greatly stimulated the development of
perturbation theories. The dynamics of the solar system has always been
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a testing ground for such theories, whose applications extend from the
computation of the ephemerides of the natural bodies to developing the
trajectories for artificial satellites.

The dynamics of asteroids are driven by the Sun and perturbation by
Jupiter, as the Jupiter-Sun mass ratio is approximately 10−3. The so-
lutions to this type of problem motivated the work of scientists around
the XV III and XIX centuries. Indeed, Laverrier (11 March 1811 - 23
September 1877), Delaunary (12 March 1890 - 17 July 1980), Tisserand
(13 January 1845 - 20 October 1896) and Poincare (29 April 1854 - 17
July 1912) added to further develop perturbation theories which are at
the basis of the study of the dynamics of celestial bodies.

1.2 Discovery of Neptune Planet

Neptune was the first planet to be discovered by using mathematics.
Figure 1.1 is the pictorial representation of the solar system. After the
discovery of Uranus in 1781, astronomers noticed that the planet was
being pulled slightly out of its normal orbit. John Couch Adams of
Britain and Urbain Jean Joseph Leverrir of France used mathematics to
predict that the gravity from another planet beyond Uranus was affecting
the orbit of Uranus. They figured out not only where the planet was,
but also how much mass it had. Following the suggestion provided by
the theoretical investigation a young astronomer, Johann Gottfried Galle
decided to search for the predicted planet and observed Neptune for the
first time on 23 September 1846. This discovery represented the first
triumph of perturbation theory.

Figure 1.1: Solar System

Similar to the discovery of Neptune, Pluto was discovered in 1930 by
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Clyde Tombaugh. Astronomers noticed that the orbits of Neptune and
Uranus were being affected by the gravity of an unknown object in the
solar system. Clyde Tombaugh carefully studied images of the night sky,
and after a lot of hard work, he finally discovered Pluto. Interestingly
Clyde Tombaugh was only 24 years old when he made this discovery.

Well-developed perturbation methods were adopted and adapted to solve
new problems arising during the development of quantum mechanics in
20(th)-century atomic and subatomic physics. Paul Dirac developed per-
turbation theory in 1927 to evaluate when a particle would be emitted in
radioactive elements. It was later named Fermi’s golden rule.

1.3 Mixed term theory

The mathematical challenge involved initially in the development of the
theory was that the term in the expansion consisted of the time param-
eter t independent of the sine and cosine functions. The contribution of
such terms to the series is significant only when t is very large(of the
order of several hundred years), even then only the first approximation
is obtained instead of the accurate planetary motion. The secular terms
i.e., the terms of the form Atn appears because the frequency of the
motion(rotation) of the planet under study depends on the respective
frequencies of other planets. If this kind of relation is allowed then both
secular and mixed terms Bt cos(ωt+ ψ) appear in the solution. Thus, in
the framework of perturbation theory the relation

ω = ω0 + ϵ ω1 (1.1)

permits the following expansion with respect to ϵ(ϵ≪ 1):

sinωt = sinω0t+ ϵ ω1 t cosω0t+ . . . (1.2)

The mixed term in this equation is obtained by expanding oscillations of
frequency (1.1) by oscillations with frequency ω0 .

Lindstedt (27 June 1854 - 16 May 1939), Paul Guldin (1577 - 1643), Ch.
Delaunay (1890-1980),B. Bohlin, and S. Newcomb’s (March 12, 1835 -
July 11, 1909) work led to the development of special methods in Pertur-
bation theory, which eliminates the secular terms and hence, it permits
one to obtain a purely trigonometric solution. The expansion of the
frequencies affected by the secular terms is no more an expansion with
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respect to the small parameter which means such expansion does not con-
tain zero approximation frequencies instead it contains the frequencies
which to some extent have been redefined or in modern physical terms,
it is renormalized. Therefore, in perturbation theory, every member of
the power series consisting of powers of a small parameter is convergent.

1.4 Small denominator problem

The method for the construction of a special kind of periodic solution was
proposed by H. Poincare and A.M. Lyapunov and this method is efficient
not only in the problems related to celestial mechanics but also used in
the theory of differential equations in general.

The order of perturbation can be reduced using the method of successive
canonical change of variables. This method also allows to take advan-
tage of better convergence(superconvergence) in order to overcome the
divergence of the series which appears due to the presence of small de-
nominators in each series no matter what order, with the help of suitable
canonical transformation.

1.5 Theory of Oscillations

Subsequent advances in perturbation theory are connected with the de-
velopment of the theory of oscillations, especially with the development
of the theory of non-linear oscillations. Non-linear ordinary differential
equation of Rayleigh (1.3)

ẍ+ F (ẋ) + x = 0, ẋ =
dx

dt
(1.3)

where F (u) satisfies the assumption uF (u) < 0 for small (u) and uF (u) >
0 for large (u) desirable auto-oscillation with one degree of freedom. The
special case of Rayleigh equation is when

F (u) = −µ(u− u2

3
), µ = constant

It is known as The van der Pol equation, a special case of equation (1.3)
in order to solve the equation

ẍ− µ(1− x2)ẋ+ x = 0, µ = const > 0, ẋ(t) ≡ dx

dt
(1.4)
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Van der Pol proposed the method of slowly varying coefficients that re-
sembled the method used by Lagrange in solving problems of celestial
mechanics. This method of slowly varying coefficients comprises of rep-
resentation of the equation in which functions harmonically oscillate and
their amplitudes and phases slowly vary as the function of the parameter
t.

N. M. Krylov and N. N. Bogolyubov developed general theory of non-
linear oscillations and used asymptotic methods in perturbation theory.
Consider equation

d2x

dt2
+ ω2 x = ϵ f

(
x,
dx

dt
, ϵ

)
(1.5)

In the case ϵ = 0, equation 1.5 describes the oscillations that are purely
harmonic which have a constant amplitude and a uniformly recurring
phase. If ϵ ̸= 0, i.e. in the presence of a non-linear perturbation solu-
tion of equation 1.5 involves overtones, the dependence of instantaneous
frequency on the amplitude, and a systematic increase/ decrease of the
amplitude depending on the input or output of energies due to perturbing
forces.

x = a cosψ + ϵu1(a, ψ) + ϵ2u2(a, ψ) + . . . (1.6)

where ui(a, ψ), i = 1, 2, . . . represent periodic functions of angle ψ with
period 2π, The values of a and ψ are taken as functions of time and are
defined by the differential equations.

da
dt = ȧ = ϵA1(a) + ϵ2A2(a) + . . .
dψ
dt = ψ̇ = ω + ϵB1(a) + ϵ2B2(a) + . . .

}
(1.7)

Thus, the problem is reduced to the choice of suitable expressions for
the functions ui(a, ψ), Ai(a), Bi(a), i = 1, 2, . . . so that the expression
(1.6),along with a and ψ after replacing by functions dependent on time
as in equation 1.7, becomes the solution of the original equation 1.5.
Additional conditions are imposed to ensure that the secular terms (terms
of the form Atn) do not appear in the solution.
If in the formal series 1.6 the expansion is cut-off after (m+1)th terms, one
obtains the m-th approximation; this approximation is asymptotic i.e. if
m is fixed and epsilon → 0, then the expression 1.6 approximates the
exact solution of 1.5. Van der Pol equation and the first approximation
equations are identical.
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1.6 Averaging Method

Differential equations describing oscillatory processes and containing a
”small” parameter may often be reduced to standard form

dXs

dt
= ϵXs(t, x1, . . . ), xn), s = 1, . . . , n (1.8)

where ϵ is a small positive parameter. Several problems in physics and
technology can be reduced to this form. Averaging method, a special
method of approximation is developed for systems of differential equa-
tions as in 1.8. This method suggests that if values of ϵ are sufficiently
small on a finite interval, the change of variables can be used to obtain
the average equations.

xi = ξi + ϵXi

can be used to obtain the averaged equations

dξs
dt

= ϵXs, 0(ξ1, . . . , ξn), s = 1, . . . , n (1.9)

where

Xs, 0(ξ1, . . . , ξn) = lim
T→∞

1

T

∫ T

0

Xs(t, ξ1, . . . , ξn)dt

The number of criteria for the existence and stability of auto-oscillatory
systems can also be obtained by the averaging method.
Equation 1.9 give the estimates of the difference |Xi − ϵi| over a time
interval of length L/ϵ.

1.7 Appendix - A

1.7.1 The approximate nature of Kepler’s laws and
two body Problem

The constraints placed on the force for Kepler’s laws to be derivable from
Newton’s laws were that the force must be directed toward a central fixed
point and that the force must decrease as the inverse square of the dis-
tance. In actuality, however, the sun. which serves as the source of the
major force, is not fixed but experiences small accelerations because of
the planets, in accordance with Newton’s second and third laws. Fur-
thermore, the planets attract one another, so that the total force on a
planet is not just that due to the sun, other planets perturb the elliptical
motion that would have occurred for a particular planet if that planet
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had been the only orbiting an isolated Sun. Keplar’s laws, therefore, are
only approximate. The motion of the Sun itself means that, even when
the attractions by other planets are neglected, Kepler’s third law must be
replaced by (M +mi) τ

2 ∝ a3, where mi is one of the planetary masses
andM is the Sun’s mass. The Kepler’s law are such good approximations
to the actual planetary results from the fact that all the planetary masses
are very small compared to that of the Sun. The perturbations of the
elliptic motion are therefore small, and the coefficient M +mi ≡ M for
all the planetary masses mi means that Kepler’s third law is very close
to being true.

Newton’s second law for a particular mass is a second-order differential
equation that must be solved for whatever forces may act on the body
if its position as a function of time is to be deduced. The exact solu-
tion of this equation, which resulted in a derived trajectory that was an
ellipse, parabola, or hyperbola, depended on the assumption that there
were only two point particles by the inverse square force. Hence, this
”gravitational two-body problem” has exact Solution that reproduces Ke-
pler’s laws. If one or more additional bodies also interact with the original
pair through their mutual gravitational interactions, no exact solution for
differential equations of motion of any of the bodies involved can be ob-
tained. As was noted above, however, the motion of a planet is almost
elliptical, since all masses involved are small compared to the Sun. it is
then convenient to treat the motion of a particular planet as slightly per-
turbed elliptical motion and to determine the changes in the parameters
of the ellipse that result from the small forces as time progresses. It is
the elaborate developments of various perturbation theories and their ap-
plications to approximate the exact motion of celestial bodies that has
occupied celestial mechanicians since Newton’s time.

1.7.2 Two-body problem

A problem dealing with the motion of two material points P1 and P2 with
masses m1 and m2 respectively, moving in three-dimensional Euclidean
space E3 when acted upon by the mutual Newton attracting forces. The
problem is special case of the n-body problem, which may be described
by a system of ordinary differential equations of order 6n, and has 10
independent integrals: 6 of motion of the centre of inertia, 3 of law of
areas (equivalently, conservation of angular momentum) and 1 of energy
conservation. The two-body problem also has three Laplace integrals
(one of which is independent of the preceding ones) and is completely
integrable.
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The integration of the two-body problem is more conveniently effected
in a special system of coordinates, in which these integrals are employed.
If the origin of the Cartesian coordinates x, y, z is placed at the centre
of masses (m1r1 + m2r2)/(m1 + m2) and the axis z is directed along
the relative angular momentum vector, then the motion of the relative
position vector r1 − r2 = (x, y, z) takes place in the plane z = 0 and
satisfies the system

µẍ = −fxr−3, µÿ = −fyr−3, (1)

where r =
√
x2 + y2, µ = m1m2/(m1 +m2) is the reduced mass and f

is the gravitational constant. The system (1) has four integrals:

xẏ − yẋ = x (law of areas),

1

2
µ(ẋ2 + ẏ2)− fr−1 = h (energy)

µ2cẏ − µfxr−1 = λ1 and µ2cẋ+ µfyr−1 = λ2 (Laplace),

which are interconnected by the relation

λ21 + λ22 = 2µ3hc2 + µ2f2

here

c2 = λ1x+ λ2y + µr, (2)

i.e. the orbits of the relative position vector are conical sections with
parameter p = c2/µ, major semi-axis a = −µ/(2h), eccentricity e =
µ−1

√
1 + 2hc2, longitude of pericentre ω(λ1 = µe cosω, λ2 = µe sinω),

and with the focus at the coordinate origin. the location of the relative
positive vector on the orbit is determined by the true anomaly v, counted
from the direction towards the pericentre; (2) then implies that r =
p/(1 + e cos v). if c ̸= 0, three types of orbits are possible:

1. If h < 0, they are ellipses.

2. if h > 0, they are hyperbolas.

3. If h = 0, they are parabolas.

If c = 0, the motion is rectilinear. The two-body problem describes an
unperturbed Kepler motion of a planet with respect to the Sun or of a
satellite respect to a planet, etc.
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1.8 Appendix B

1.8.1 Three-body problem

The problem on the motion of three bodies, regarded as material points,
mutually attracting one another according to Newton’s law of gravitation
(cf. Newton laws of mechanics). The classical example of the three-body
problem is that of the motion of the Sun-Earth-Moon system. The three-
body problem consists in finding the general solution of the system of
differential equations

mi
d2xi
∂t2

=
∂U

∂xi
, mi

d2yi
∂t2

=
∂U

∂yi
, mi

d2zi
dt2

=
∂U

∂zi
, i = 1, 2, 3,

where xi, yi, zi are the rectangular coordinates of the body Mi in some
absolute coordinate frame with fixed axes, t is the time, mi is the mass of
Mi, and U is the potential, which depends only on the mutual distances
between the points. The function U is defined by the relation

U = f

(
m1m2

∆12
+
m2m3

∆23
+
m3m2

∆13

)
, f > 0,

where the mutual distances ∆ij , i, j = 1, 2, 3 are given by the formula

∆ij = ∆ji =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2

From the properties of the potential one can derive ten first integrals
of the equations of motion in the absolute system of coordinates, Six of
them, called the integrals of motion of the centre of mass, determine the
uniform rectangular motion of the centre of mass of the three bodies.
The three integrals of the angular momentum fix the value and the di-
rection of the angular momentum of the three body system. The energy
integral defines the constant magnitude of total energy of the system.
H. Bruns (1887) proved that the equations of motion of the three-body
problem have no other first integrals expressible in terms of algebraic
functions of the coordinate and their derivatives. H. Poincare (1889)
further proved that the equations of motion of the three-body problem
do not have transcendental integrals expressible in terms of single-values
analytic functions. C. Sundman (1912) found the general solution of the
problem in the form of power series in a certain regularizing variable,
converging at each instant. However, the Sundman series proved to be
completely useless for qualitative investigations as well as for practical
computations due to its extremely slow convergence.
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The equation of three-body problem admits five particular solutions, in
which all three material points are in some fixed plane. Here, the configu-
ration of the three bodies remain fixed and they describe Kepler trajecto-
ries with a common focus at the centre of mass of the system. Two of the
particular solutions corresponds to the case when the three bodies form
an equilateral triangle at all times. This is the so-called triangular solu-
tion of the three-body problem, or the Lagrange solutions corresponding
to three bodies on one straight line are called the rectilinear solutions, or
the Euler solutions.

For the general solution of the three-body problem, final motions have
been studied in detail, that is, the limiting properties of the motion as
t→ +∞ and t→ −∞.

A particular case of the three-body problem is the so-called restricted
three-body problem, which is obtained from the general three-body prob-
lem in case the mass of one of the three bodies is so small that its influence
on the motion of the other two bodies can be neglected. In this case, the
bodies M1 and M2 with finite masses m1 and m2 move under the action
of their mutual attraction along Kepler orbits. In the right-handed rect-
angular coordinate system Gξ η ζ with origin G at the centre of mass of
M1 and M2, with axis ξ directed along the line joining M1 and M2 and
axis ζ perpendicular to the plane of their motion, the motion of the third
bodyM3 of small mass is described by the following differential equation:

ξ̈ − 2ν̇ η̇ − ν̇2 ξ − ν̈ η =
∂W

∂ξ
,

η̈ − 2ν̇ ξ̇ − ν̇2 η − ν̈ ξ =
∂W

∂η
,

ζ̈ =
∂W

∂ζ
,

where W = f

(
m1

r1
+
m2

r2

)
,

ν is the true anomaly of the Kepler motion of M1 and M2, and r1 and
r2 are the distances of M3 from M1 and M2, respectively. In the case of
the circular restricted three-body problem,
ν̇ = n = const, ν̈ = 0,

the equation of motion of M3 have also a first integral, called the jacobi
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integral, of the form

ξ̇2 + η̇2 + ξ̇2 = n2(ξ2 + η2) + 2f

(
m1

r1
+
m2

r2

)
+ C

where C is an arbitrary constant. The surface defined by the equation

n2(ξ2 + η2)2f

(
m1

r1
+
m2

r2

)
+ C = 0

is called the surface of zero velocity and is remarkable in that it deter-
mines the regions of possible motions of M3 relative to M1 and M2. The
restricted three-body problem has particular solutions similar to those of
the general three-body problem. The position of the body with a small
mass in these particular solutions is called the points of libration.

For the restricted three-body problem, various classes of periodic motion
have been investigated.


