CONTENTS

Preface			
		CHAPTER 1	
		Applied Design Thinking for Productivity	1-104
Various Definitions	3		
What is a business?			
The simple way to understand:	5		
Building the Value Proposition	7		
Understanding the Terms Cost, Price & Value	9		
The Cost	9		
The Price	9		
The Value	9		
Resource Efficiency	11		
Critical Analysis	17		
The Order of Addressing the Operations:	21		
Causative Factors Affecting Inefficiencies	21		
Value Engineering	27		
FAST: Functional Analysis System Technique	35		
Value Analysis	37		
The Ve Job Plan	40		
The Team	41		
Ownership	41		
Function Cost Analysis	41		
Integrated Product and Process Development	42		
Quality Function Deployment	43		
Cost Deployment	44		
Target and Kaizen Costing	44		

(xiv) Content

VM and Design Thinking Applications4	16
Selection of Projects4	17
Establishing a Design Thinking & Value Engineering activity: 4	19
Three-Tier Training Program	19
Subject wise Analysis of Functions and Information Listing (SWAFIL)	53
Problem Selection Criteria	
Creativity: Stress your Brain: Think	
VALUE means different things to different people	
Value Engineering	
Areas for Application of VA VE	
Basic Plan & Value Engineering Job Plan 8	30
Value Engineering Job Plan8	
The VE Team Formation9	
Functional Hierarchy 10	00
Evolution of Alternatives)3
CHAPTER 2	
System Approach for Problem Solving 107-13	34
Analysis 10)7
Synthesis	
Implementation11	15
Operation	15
Involvement	15
The Three Steps for Problem-Solving:	
Eliminate-Combine-Modify11	16
Group Dynamics in Value Management	8
Factors Operating at the Individual Level11	8
Evaluation of Alternatives and	

Сн	APTER 3		
_	panising Design Thinking AVE Function 137-162		
Desig	Organisation for Design Thinking and Design Thinking & VAVE14 Recommendation15		
	APTER 4 se Studies 165-374		
Case	es:		
1.	Creating your own Bench Mark, instead of following someone else's Even the best can be improved: 165		
2.	Pitfalls in Planning and Execution 174		
3.	Import substitution: Just know what you really need 177		
4.	Very high process water consumption 178		
5.	Waste heat recovery from Diesel generation set 180		
6.	Who is the Government anyway? 182		
7.	Very high consumption of additives 186		
8.	Just a plain talking can solve major problem 201		
9.	Transparency and Inter personnel relations work better than systems 205		
10.	Over designing and Redundancy 206		
11.	Redundant and Avoidable processes 207		
12.	Putting theory to practice: Using OR models 210		
13.	Curiosity to learn, questioning and challenging pays 213		
14.	Reduced costs through Process optimisation 218		
15.	Process analysis pays 225		

(xvi) | Contents

- 16. Engineering theory applied to solve problem 239
- 17. Understanding process and experimenting with gut feelings work 246
- **18.** Maximising capacity without investment **252**
- 19. Design Analysis and functional understanding help reduce costs 262
- 20. Processing and Handling waste generates raw material 264
- 21. Creating wealth from waste 266
- **22.** Sustainable Development and Circular Economy through waste recycling: The Rice Husk Ash **286**
- **23.** Reduction of delay in transport of material between process stages in large steel plant **300**
- 24. Heavy Consumption of costly spares 304
- 25. Optimisation of equipment availability 310
- 26. Air circulation and process improvement 326
- 27. Creating capacity without any investment 334
- 28. Improving system reliability by reduced parts in system 344
- 29. Assuring sustainability through waste recycling 347
- **30.** A total systems out look **357**
- 31. Cleaner Production 361

References and Bibliography

375-380