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1.1 INTRODUCTION 

This chapter deals with the analysis of a transmission line. The factors analyzing the performance 
of a transmission line are dealt. Further, short, medium and long transmissions are analyzed. 
Further the analysis is performed with respect to ABCD constants, open circuit and short circuit 
conditions. The concept of travelling waves in power systems has been dealt. 

1.2 CONCEPTS OF A TRANSMISSION LINE 

An electric transmission line can be represented by a series combination of resistance, inductance 
and shunt combination of conductance and capacitance. These parameters are symbolized as R, L, 
G and C respectively. Among these R and G are least important as they do not affect much the 
total equivalent impedance of the line and hence the transmission capacity.  

1.3 PERFORMANCE OF 
 TRANSMISSION LINES 

The performance of a transmission line can be calculated 
using: (i) % Efficiency, (ii) % Regulation 

(i) % Efficiency: Consider a transmission line as
shown in Figure 1.1.
Ps is sending end power and PR is the receiving end power
% Efficiency of a transmission line is

R R

S R Losses

P P
%  η ×100 = ×100

P P + P

  Plosses : For a single phase system, power loss = I2 R 
   For a three phase system, power loss = 3I2 R  
   where ‘I’ is the phase current and ‘R’ is the resistance per phase. 

Transmission Line Analysis

Figure 1.1  Transmission line  
to determine % Efficiency 
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(ii) %Regulation: As the transmission line is a stationary device, % voltage regulation is
calculated.
Consider a transmission line as shown in
Figure 1.2.
VS  is sending end voltage and VR is the receiving
end voltage. 
Voltage drop in transmission line = VS – VR 

S R

R

V – V
%  = ×100

V


 Case: Assume that the receiving end of transmission line is operating under no–load condition, 

As the receiving end is operating at no-load condition, I = 0 

Voltage drop in transmission line = 0 

Sending end voltage, VS = No load-receiving end voltage, 
oRV

S R

R

V – V
% = ×100

V


 The percentage regulation of a transmission line is defined as the change in receiving end 
voltage from no load to full load, expressed as % full load receiving end voltage. 

Note: The percentage efficiency of a transmission line must be high and percentage regulation of 
a transmission line must be low for better performance of transmission lines. 

1.4 CLASSIFICATION OF TRANSMISSION LINES 

(a) Transmission lines are primarily classified based on wavelength.
(b) The term power transmission means travel of voltage wave and current wave from sending

end to receiving end of the transmission line.
(c) Voltage wave & current wave travels at velocity of light from sending end to receiving end

of the transmission line.

Consider a voltage wave travelling from 
sending end to the receiving end of 
transmission line as shown in figure 1.3. 

8
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Figure 1.2  Transmission line to
determine % voltage regulation

Figure 1.3  Voltage travelling wave 
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i.e., voltage (or) current wave travels an angular distance of 6000 km to complete one cycle, but 
due to complexity of power system network, transmission lines are further classified based on 

1. Physical length of the line 
2. Operating voltage 
3. Effect of capacitance 

and is tabulated as follows. 

Transmission Line Physical Length Operating Voltage Effect of Capacitance 

Short line 0–80km 0–20kV Neglected 

Medium–line 80–120km 20–100kV Lumped or concentrated 

Long–line > 120 km >100kV uniformly distributed 

1.5 ANALYSIS OF SHORT TRANSMISSION LINES 

 1. Equivalent Circuit: A short transmission 
line consists of resistance and inductance 
connected in series. 

R is the resistance and jXL is the inductive 
reactance. 

Consider the equivalent circuit as shown in 
the Figure 1.4.  

 2. Mathematical Relations: 

   IS = IR = I (say) 

  Resistive voltage drop = IR 

  Reactive voltage drop =j IXL 

  Total voltage drop = IR + I(jXL) = I(R + jXL) = IZ    

  Sending end voltage, VS = VR + IR + I (jXL) 

     VS = VR + I(R + jXL) 

     VS = VR+IZ    

 3. Vector Diagram: Consider receiving end voltage, VR as the reference vector. 

  Assume R-L Load 

          Receiving end current, IR lags receiving end voltage, VR by R 

  where  
R0 < 90 , lag   

  The vector diagram is shown in Figure 1.5. 

 
Figure 1.4  Short Transmission Line 
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Figure 1.5  Vector diagram of short transmission line 

  For lagging power factor loads: R < S  

  Note: For leading power factor loads: R > S 

 4.  ABCD Constants: For a two-port network, 

    VS = AVR + BIR …..(1.1) 

    IS = CVR + DIR …..(1.2) 

    VS = VR + Z IR …..(1.3) 

  Compare (1.1)  & (1.3) 

    A = 1 and B= Z 

    IS = IR 

    IS = 0. VR + 1.IR …..(1.4) 

  Compare (1.2) & (1.4) 

  C = 0   and   D = 1 

  A = D = 1, i.e., short line is symmetrical 

  AD –  BC = 1,i.e., short line is reciprocal 

 5. Conclusion: 
 1. A = 1, D = 1 either for series branch (or) shunt branch 
 2. Constant ‘B’ determines impedance (Z) of series branch 
 3. Constant ‘C’ determines admittance (Y) of shunt branch 

1.6 ANALYSIS OF MEDIUM TRANSMISSION LINES 

Medium lines are classified based on the location of the capacitance in the equivalent circuit into 
four methods. 

(a) Load condenser method: Capacitor is connected across load 
(b) Source condenser method: Capacitor is connected across source 
(c) Nominal- method: Capacitance is equally split across source and load 
(d) Nominal-T method: Capacitor is at the middle of the line 
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1.6.1 Load Condenser Method 

 1. Equivalent Circuit: Consider the equivalent circuit as shown in the Figure 1.6. 

    R is the resistance and jXL is the inductive reactance. 

 

Figure 1.6 Medium Transmission Line by Load condenser method 

 2. Mathematical Relations:  Sending end current, IS = IR + IC 

  Resistive voltage drop = ISR 

  Reactive voltage drop = IS(jXL) 

  Total voltage drop = ISR + IS(jXL) 

                              = IS(R + jXL) 

                              = ISZ  

  Sending end voltage,VS = VR+ISR + IS(jXL) 

     VS = VR + IS(R + jXL) 

     VS = VR + IS Z 

 3. Vector Diagram: Let VR be the Reference vector 

  Assume R-L Load. 

           Receiving end current,IR lags receiving end voltage, VR by ϕR 

  where  R0 < 90 , lag   

 

Figure 1.7  Vector diagram of Medium Transmission Line by Load condenser method 
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 4.  ABCD Constants: 

 
A B 1 Z 1 0 1 YZ Z

C D 0 1 Y 1 Y 1

       
        

       
 

  A D i.e., Load condenser method is unsymmetrical 

  AD – BC = 1 i.e., Load condenser method is reciprocal 

Note: As capacitor is unsymmetrically located in the equivalent circuit, load condenser 
method is unsymmetrical. 

1.6.2 Source Condenser Method 

 1. Equivalent Circuit: Consider the equivalent circuit as shown in the figure 1.8. 

  R is the resistance and jXL is the inductive reactance. 

 

Figure 1.8  Medium Transmission Line by Source condenser method 

 2. Mathematical Relations: Sending end current, IS = IR + IC 

  Resistive voltage drop = IRR 

  Reactive voltage drop = IR(jXL) 

  Total voltage drop = IRR + IR(jXL) = IR (R + jXL)=IR Z 

  Sending end voltage, VS = VR + IRR + IR(jXL) 

                                                             = VR + IR(R + jXL) 

  VS = VR + IRZ 

3. Vector Diagram: Let VR be the reference vector 

  Assume R-L Load. 

           Receiving end current, IR lags receiving end voltage, VR by ϕR 

  where  o o
R0 90 ,  lag    

  The vector diagram is shown in Figure 1.9. 

 


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Figure 1.9  Vector diagram of Medium Transmission Line by Source condenser method 

 4. ABCD–Constants: 

A B 1 0 1 Z 1 Z

C D Y I 0 1 Y 1 YZ

       
                

 

i.e., A D i.e., source condenser method is unsymmetrical  

 AD – BC = 1 + YZ – YZ = 1 

 AD – BC = 1 i.e., source condenser method is reciprocal 

Note: As capacitor is unsymmetrically located in the equivalent circuit, source condenser method 
is unsymmetrical. 

1.6.3 Nominal T–Method 

As capacitor is located exactly at the middle of the line, Nominal T–method is also known as 
middle condenser method. 

 The term ‘nominal’ represents ‘rated voltage’ 

 1. Equivalent Circuit: Consider the equivalent circuit as shown in the Figure 1.10. 

 

Figure 1.10  Medium Transmission Line by Nominal–T method 

 


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 2. Mathematical Relation: Sending end current, IS = IR + IC 

Voltage across capacitor, L
C R R R

jXR
V V I I

2 2
     
 

 

Sending end voltage, L
S C S S

jXR
V V I I

2 2
     
 

 

 3. Vector Diagram: Let VR be the reference vector 

  Assume R-L Load. 

          Receiving end current, IR lags receiving end voltage, VR by R 

  where  o o
R0 90 ,  lag    

  The vector diagram is shown in Figure 1.11. 

 

Figure 1.11  Vector diagram of Medium Transmission Line by Nominal–T method 

 4. ABCD – Constants 

Z Z
A B 1 01 1

2 2
C D Y 1

0 1 0 1

                       

YZ YZ
1 Z 1

A B 2 4
C D YZ

0 1
2

                  
  i.e., A = D, i.e., Nominal T–method is symmetrical 

  AD – BC = 1, i.e., Nominal T–method is reciprocal 

Note: As capacitor is located symmetrically in the equivalent circuit Nominal–T method is 
symmetrical. 

Case - With receiving end of transmission line operating under no–load condition: 
 1. Equivalent Circuit: Consider the equivalent circuit as shown in Figure 1.12. 
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Figure 1.12  Medium Transmission Line by Nominal–T method with open circuited receiving end 

 2. Mathematical Relations: As IR = 0, voltage drop due to IR = 0 

    
0C R RV V V   

L
S C C S

jXR
V V I I

2 2
     
 

 

 IS = IC 

L
S C C C

jXR
V V I I

2 2
     
 

 

 3. Vector Diagram: Let VR be the Reference vector 

  The vector diagram is shown in Figure 1.13. 

Ferranti Effect 

 The magnitude of sending end voltage is less than the magnitude of receiving end voltage at 
no–load condition 

 Ferranti effect is due to capacitive current (or) capacitance in the equivalent circuit. 
 As short line do not have capacitance, Ferranti effect does not occur in short line. 
 Therefore, Ferranti effect occurs in medium line and long line at no load conditions. 
 % Voltage rise in transmission line due to Ferranti effect   

     
2 2

–8ω
= ×10 V

18

l

 
  where ‘l’ is the length of transmission line in Km.

 

 Receiving end voltage at no–load condition is 

          VRO = VC = IC (– jXC) 

           S S
C

L L
C

V V 1
= (– jX ) (– j )

XR R j Cj (– jX ) j (– )
2 2 2 2 C

  
  

          
   

 

 

 



 
Figure 1.13  Vector diagram of  

Ferranti Effect 
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1.6.4 Nominal–𝝅 Method 

*As the capacitor is split into two equal parts across source and load, nominal–𝜋 method is also 
referred as “split condenser method”. 

 1. Equivalent Circuit: Consider the equivalent circuit as shown in the Figure 1.14. 

   R is the resistance and jXL is the inductive reactance. 

  Vcs = Voltage across capacitor at the sending end. 

  VcR = Voltage across capacitor at the receiving end. 

 

Figure 1.14  Medium Transmission Line by Nominal–π method 

 2. Mathematical Relations: 

Cs = CR = 
C

2
 

 
RC RV V   

  Resistive voltage drop = IR 

  Reactive voltage drop = IjXL 

  Total voltage drop = I R + I jXL 

                        = I (R + jXL) 

                            = IZ 

  Sending end voltage, VS = VR + IR + I (jXL) 

VS = VR + I (R + jXL) 

VS = VR + IZ 

 3. Vector Diagram: Let VR be the reference vector. 

  Assume R-L Load 

          Receiving end current, IR lags receiving end voltage, VR by ϕR 

     
R0 90,  lag    
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 2. Mathematical Relations: As IR = 0 

     
R 0C R RV V V   

     
RC RI I ( I 0)   

     
0S R LV V IR I(jX )    

     
R R RS C C C LV V I R I (jX )    

 3. Vector Diagram: 

  Let 𝑉ோబbe the Reference vector 

  The vector diagram is shown in Figure 1.17. 

 

Figure 1.17  Vector diagram of Ferranti Effect for Nominal–𝜋 method 

 * |VS| < |VR0
| i.e., Ferranti effect 

 4. No–Load Receiving End Voltage: 

0 R R RR R C C CV V V I (–jX )    

   
R

S

L C

V

R jX (– jX )

    
  

 

   
S

L
R

V
j

R j –
C

 
    
  

  

 
SV j

–
j C

R j L – ω
C 2
2

 
  
      

   
    

 

Note: Operator ‘j’ rotates a vector in anticlockwise direction by 900. 
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1.7 IMPEDANCE OF TRANSMISSION LINE FOR OPEN CIRCUIT   
  CONDITION & SHORT CIRCUIT CONDITION 
Case 1: With receiving end open–circuited 

 
Figure 1.18  With receiving end open–circuited 

As receiving end is open circuited, IR = 0 and VR = VR0  

From the basic two port equations, 

VS = AVR + BIR 

VS = A 
oRV  	 ( IR = 0) …..(1.5) 

     
0

S

R

V
A

V
  

     IS = CVR + DIR 

     IS = C
oRV  …..(1.6) 

     
0

S

R

I
C

V
  

Divide (1.5) and (1.6): 
S

S

V A

V C
  …..(1.7) 

Case 2: With Receiving end short–circuited 

 
Figure 1.19  With receiving end short–circuited 

As receiving end is short circuited, VR = 0 and IR = IRSC
  

VS = AVR + BIR 

                         VS = B
SCRI  …..(1.8) 

SC

S

R

V
B

I
  
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IS = CVR + DIR 

                        
SCS RI D.I  …..(1.9) 

     
SC

S

R

I
D

I
  

     S

S

VB

D I
  …..(1.10) 

  Multiply (1.7) & (1.10)  

     S S

S S

V V A B

I I C D
    

     
2

S

S

V AB

I CD

 
 

 
 

  Assuming symmetrical line i.e., A = D 

     
2

S

S

V B

I C

 
 

   

     

S

S

V B

I C

 
 

   

     

S SC
C

S OC

V ZB
Z

I C Y

 
  

   

     

S SC
C

S OC

V ZB
Z

I C Y
   

S
C SC OC

S

V
Z Z Y

I
   

Characteristic Impedance, Zc: The Impedance of a transmission line with losses is known as 
Characteristic Impedance, Zc 

 * ZC = 400   for overhead transmission lines  

 * ZC =  40   for underground cables 

Surge impedance ZS: The impedance of a transmission line without losses is known as Surge 
impedance ZS. 

     i.e.,  the impedance of an ideal transmission line.  

1.8 CONDITIONS FOR ZERO VOLTAGE REGULATION AND  
  MAXIMUM VOLTAGE REGULATION OF A TRANSMISSION LINE 

* Consider a short transmission line, by taking I R as reference. 
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Figure 1.20  Vector diagram of short transmission line 

 From the above vector diagram, 

    VS   	VR + IR R cos ϕR + IR XL sinϕR 

    VS – VR   IRR cos ϕR + IR XL sin ϕR 

    S R

R

V – V
%   100

V
  

 

                            R R L
R R

R R

I R I X
cos 100 sin 100

V V
       

           R R L
R R

R R

I R I X
cos 100 sin 100

V V

   
        
   

 

           rpu R xpu Rv cos 100 v sin 100       

           R R X R% V cos % V sin     …..(1.11) 

 In general, % Regulation 

R R X R%   % V cos % V sin      

 In general the sign is positive for lagging power factor load and negative for lead power factor 
load. 

Case 1: Condition for maximum voltage regulation 

 Maximum %voltage regulation occurs at lagging power factor load 
    R R X R%  % V cos %V sin      

R

d
(% ) 0

d
 


 

R R X R% V (– sin ) % V (cos ) 0     

R R X R% V sin % V cos    

X
R

R

% V
Tan  

% V
   

          

R L

R

R

R

I X 100

V
I R 100

V





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L
R

X
Tan 

R
   

    –1 L
R

X
Tan  

R
    
 

 

Impedance of the short line: Z = R + j XL 

Impedance Triangle: 

Where θ = Impedance phase angle 

 From the Figure 1.21, 

    L
R

X
Tan = 

R
  

θ = R 

 
Figure 1.21  Impedance triangle of short line 

Case 2: Condition for zero voltage regulation 

* Zero voltage regulation occurs at leading p.f load st  

R R X R%  = % V cos  – % V  sin      

R R X R%  = 0  % V cos  – % V  sin  0      

R R X R% V cos  – % V  sin     

R

R R
R

R LX L

I  R
×100

% V V R
Tan = = =

I  X% V X×100
R

  

Rθ =   

–1
R

L

R
= Tan

X

 
  

 
 …..(1.12) 

From Impedance triangle, 

    
R

L

R
Tan cot tan –

X 2

      
 

 

    
R –

2


    
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1.9 RELATION BETWEEN ACTUAL LOADING OF TRANSMISSION  
  LINE AND SURGE IMPEDANCE LOADING 

(A) Characteristic Impedance Loading (CIL): Consider a transmission line with losses 
connected to a load as in the Figure 1.22. 

 

Figure 1.22  A practical transmission line 

CIL = S R

C

| V |  |V |

Z
W (or) kW (or) MW 

“The maximum active power transmitted through a line with losses and further through the 
load at unity power factor is known as Characteristic Impedance Loading” (CIL). 

(B) Surge Impedance Loading (SIL): Consider a transmission line without losses connected 
to a load as in the figure 1.23. 

 

Figure 1.23  An ideal transmission line 

SIL =
2

S R

S S

| V |  |V | | V |
 

Z Z
 W or kW or MW 

   S R| V | = | V | = | V |  

“The maximum active power transmitted through a loss less line and further to the Load at 
unity p.f. is known as Surge Impedance Loading” 

Condition 1 – Actual Loading of a transmission line is greater than surge impedance Loading of 
transmission line 

 1. As power carrying capacity increases, current flowing through the transmission line increases, 

electromagnetic energy stored by inductor in the magnetic field = 21
LI

2
 increases 

   Inductor is dominant, p.f is Lagging, |VR| < |VS| and Ferranti effect do not occur. 
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Condition 2 – Actual Loading Actual Loading of a transmission line is lesser than surge 
impedance  Loading of transmission line 

 1. As power carrying capacity decreases, current flowing through the transmission line decreases 

& Electromagnetic energy stored by inductor in the magnetic field = 21
LI

2
 decreases 

   Capacitor is dominant, p.f is Leading, |VR| > |VS| and Ferranti effect occurs. 

 Ferranti effect can be eliminating by loading the transmission line beyond their surge 
impedance loading capacity. 

Q1. The sending end voltage & receiving end voltage of a transmission line are 220kV, 200kV 
respectively. Determine the Characteristic Impedance Loading of transmission line. 

 

Solution: 
S R

C

| V || V |
CIL

Z
  

3 3(220 10 )(200 10 )
CIL

400

 
  

CIL = 110MW 

Q2. Determine the surge impedance loading of an underground cable operating at 400 kV. 

Solution: 
2 3

S

| V | (400 10 )
SIL

Z 40


   

SIL = 4000MW 

Q3. The open circuit& short circuit impedance of a transmission line are 16 × 104 , & 1  
respectively. Determine the characteristic impedance of the transmission line. 

Solution: 

C OC SCZ Z Z
  

416 10 1    

ZC = 400  

Q4. The ABCD constants of a 220kV transmission line are A = D = 0.94
01 01 , B =  130 073  

(Ω) and c = 0.0001 090  (Ω). If the sending voltage of the Line for a given Load delivered 
at nominal voltage is 240kV then %voltage regulation of the line is 

Solution: 

For a No – Load condition IR = 0 

VS = AVR + BIR = A Ro
V  

S
Ro

V
V

A
  




 


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R Ro

R

| V | – | V |
%  = ×100

| V |
  

       

S
R

R

V
– V

A
= ×100

| V |
 

       

240
– | 220 |

0.94
100

220
   

%  = 16.05%  

Q5. The ABCD–constants of a three phase transmission line are A = D = 0.8
01 , B = 170

085

Ω, C = 2 × 10–3 
090.4 S. The sending end voltage is VS = 400kV. Determine the receiving 

end voltage under no–load condition. 

Solution: 

No – Load receiving end voltage, 

S
Ro

V
V

A
  ( No–Load condition IR = 0) 

        = 
400

0.8
 VS = AVR + BIR 

Ro
V = 500 kV 

Q6.  A 220kV transmission line is represented by nominal ߨ–parameters A = 0.9
05 , B = 80

065
Ω, the sending end voltage is maintained at 220kV. Calculate the rise in voltage 

Solution: 

The no–load receiving end voltage is 

.
S

Ro

V
V

A
  

             
200

0.9
  

Ro
V = 244.4 kV 

 The no–load rise in the voltage is 

Ro
V – VS = 244.4 – 220 = 24.4kV 

Q7. For a 500Hz frequency excitation, how can a 50km long power transmission line be 
modeled ? 

 



20 |  Computer Methods in Power Systems  

Solution: 

As frequency increases by 10 times, physical length decreases by 10 times,  

 Short line: 0 – 8 km 

 Medium line: 8 – 16 km 

 Long line: greater than 16 km 

				∴ 50 km line can be modeled as a long line. 

Q8. In the matrix form, equations of a 4– terminal network representing a transmission line is 
given by 

     S R

S R

A BV V

C DI I

    
    
    

 

The two –networks considered are 

 

 Determine the matrices for the networks A & B  

Solution: 

A B 1 0 1 Z 1 Z

C D Y 1 0 1 Y 1 YZ

       
               

 

A B 1 Z 1 0 1 YZ Z

C D 0 1 Y 1 Y 1

       
        

       
 

 

 

Q9. Two networks are connected as shown in the figure, the equivalent ABCD–constants are 

further obtained, given that Z1 =10
030 Ω, C= 0.025

045 , find the value of Z2?  

1

2

1 0
A B 1 Z

1
1C D 0 1

Z

 
                
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1
1

2

2

Z
1 Z

Z

1 / Z 1

  
 
  

 

2 0
2

1 1 1
C Z

Z C 0.025 45
     

Z2 = 40
030  

Q10. A 220kV, 20km Long three phase transmission line has the following ABCD constants. A 

= D = 0.96
03 , B = 55

065 Ω, C = 0.510–4 080 S. Determine the charging current per phase. 

Solution: 

Definition: The source current with receiving end open–circuited in source condenser method is 
called “Charging Current”. 

IR = 0 

IC  = IS = CVR + DIR 

       = CVR 

    = (0.5 10–4)
320 10

3

  
 
 

 

    = 11

3
 A 

Q11. A 50HZ, 3– transmission line of length 100km has a capacitance of 
0.03 μF

km
. It is 

represented by ߨ– model. Determine the shunt admittance at each end of the transmission 
line? 

Solution: 

0.03 μF
C = ×100km

π km
 

3
C = μF

π
 

 The shunt admittance at the end of each transmission line is 

    –6 –6
C C

Y 1 1 1 3
= jB = jω = (j2π×50× ×10 = j 150×10 S

2 2 2 2 π
 

 

Q12. The Generalized circuit constants of a 3–, 220kv rated voltage, medium length line are A 

= D = 0.936
098 , B = 142 076.4  Ω, load at the receiving end is 50MW at 220kV with a 

p.f. of 0.9(lagging). Calculate the magnitude of Line–to–Line sending end voltage? 


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Solution: 

VR = 220kV 

VS = AVR + BIR 

     0 o
R

220
= (0.936 98 ) (142 76.4 )I

3

 
  

 
 

PR = VRIRcos R 

50 ൈ 106 = 3 220 × 103 × IR 0.9 

IR = 145.79A = 145.79 –1–cos (0.9) = 145.79 0–25.84  A 

Vୗైషొ = A VR + B IR = (0.936 098 )
3220

10
3

 
 

 
+ (142 076.4  (145.79 025.84  

S SLL L–N
V 3V 3 133kV 233kV     

Q13. Calculate the % rise in voltage at the receiving end of transmission line of length 200km, 
operating at 50Hz? 

 

Solution: 

    % rise in voltage  = 
2 2

–8S R

R

V – V
100 10

V 18

l
    

                  
2 2

–8(2 50) (200)
0

18

 
   

                                             = 2.1932% 

Q14. Calculate the time taken by voltage wave to travel 600km long overhead transmission line 
is. 

Solution: 

    
5

length,  600
Time,  t = 2 msec

velocity,  3 10
 

 
l  

 

Q15. A transmission line is having resistance 18 & reactance 12 and supplies a load of 
5MW at a voltage ‘v’. The supply voltage is “VS”. If V = Vs then determine the p.f. of the 
load. 

Solution: 

VR = V and Vs = V 

VS = VR + IRR cos ϕR IR XL sin ϕR 

 

3 

 

 


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for VS = VR  IRR cos ϕR – IRXLsinϕR = 0 

–1
R R R

L

R 18
tan  1.5 tan (1.5) 56.3

X 12
           

cos ϕR = 0.53, Lead 

1.10 INTERCONNECTION OF TRANSMISSION LINE 

1.10.1  Transmission Lines Connected in Cascade 

The cascade connection of transmission lines is shown in the figure 1.24. 

 

Figure 1.24  Cascade connection of transmission lines 

S 1 1

S 1 1

V A B V

I C D I

     
     

   
 

S 1 1 2 2 R

S 1 1 2 2 R

V A B A B V

I C D C D I

       
       
      

 

S 0 0 R

S 0 0 R

V A B V

I C D I

     
     

    
 

0 0 1 1 2 2

0 0 1 1 2 2

A B A B A B

C D C D C D

     
     
    

 

Q16. Two transmission lines are connected in cascade, whose ABCD parameters are  
o

1 1

1 1

A B 1 10 30

C D 0 1

  
   

   
 and 2 2

o
2 2

1 0A B

C D 0.025 –30 1

  
   

   
. 

 Determine the resultant ABCD Parameters. 

Solution: 
o

0 0 1 1 2 2

o
0 0 1 1 2 2

1 0A B A B A B 1 10 –30

C D C D C D 0 1 0.025 –30 1

        
          
        

 


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1.10.2  Parallel Connection of Transmission Lines 

The parallel connection of transmission lines is shown in the figure 1.25. 

 

Figure 1.25  Parallel connection of transmission lines 

 

1 2 2 1 1 2 2 1
0 0

1 2 1 2

A B A B D B D B
A D

B B B B

 
 

 
 

1 2 1 2 2 1
0 0 1 2

1 2 1 2

B B (A – A )(D – D )
B C C C

B B B B
   

 
 

Case  – With identical transmission lines connected in parallel 

A1 = A2 = A ;  B1 = B2 = B ; C1 = C2 = C; D1 = D2  = D 

AO = A 

DO = D 

BO = 
B

2
 

CO = 2C 

Q17. A medium line with parameters ABCD is extended by connecting a short line of impedance 
Z in series. Determine the overall ABCD–parameters of the series combination.  

Solution: 

Assume nominal–T line. 

Anew = 1+
YZ

2
= 1+YZ1 = A old 

Cnew = Y = Cold 

2

old

YZ YZ
B Z 1 Z

4 4
     
 

 

            
Z Z Z Z

Y .
2 2 2 2

        
   
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1 2 1 2(Z Z ) Y(Z .Z )   

Bnew = 1 2 1 2{Z (Z Z)} YZ (Z Z)    

        = 1 2 1 2 1{(Z Z YZ Z )} {Z YZ Z}   

Bnew = Bold + ZAold 

Dold = 1+YZ2 = 1+
YZ

2

       = 1+ Y (Z2+Z)  

       = 1+YZ2+YZ 

       = Dold + YZ 

Dnew = Dold + Z Cold 

OBJECTIVE QUESTIONS 

1. A transmission line consists of R,L in _____________ and G,C in __________.

2. Transmission lines are primarily classified based on _____________ of the travelling wave.

3. Transmission lines are secondarily classified based on ____________________________.

4. Ferranti effect do not occur in __________________ transmission line.

5. Ferranti effect occurs with receiving end _______________________.

6. Ferranti effect results in no–load receiving end voltage ____________than sending end
voltage.

7. The impedance of a practical transmission line is known as ___________________.

8. The impedance of an ideal transmission line is known as ________________________.

9. The characteristic impedance of an overhead transmission line is ___________ohms.

10. The characteristic impedance of an underground cable is ____________ ohms.

11. The maximum active power transmitted through a practical transmission line is known as
__________________________________.

12. The maximum active power transmitted through an ideal transmission line is known as
_______________________________.

13. _______________________________varies inversely to the length of the line.

14. _____________________________ is independent of the length of the line.

15. The constants A,C can be determined with receiving ______________________.

16. The constants B,D can be determined with receiving end __________________________.

17. Characteristic impedance is the geometric mean of ____________________ respectively.




