BS Publications
logologo
logo
logo
logo
 
 
Breakline Breakline
 
 
Search:
OR OR OR
 
 
 
Book Details
Structural Dynamics Theory and Computation
Author(s) :Mario Paz – Young Hoon Kim

image
ISBN : 9783319947426
Name : Structural Dynamics Theory and Computation
Price : Currency 89.99
Edition : Sixth Edition
Author/s : Mario Paz – Young Hoon Kim
Type : Reference Book
Pages : 652
Year of Publication : 2019
Publisher : Springer / BSP Books
Binding : Hardback
BUY NOW
Evaluation Copy, Review Form instagramlogo facebooklogo 20 20 20 20

About the Book:

The sixth edition of Structural Dynamics: Theory and Computation is the complete and comprehensive text in the field. It presents modern methods of analysis and techniques adaptable to computer programming clearly and easily. The book is ideal as a text for advanced undergraduates or graduate students taking a first course in structural dynamics. It is arranged in such a way that it can be used for a one- or two-semester course, or span the undergraduate and graduate levels. In addition, this text will serve the practicing engineer as a primary reference.


The text differs from the standard approach of other presentations in which topics are ordered by their mathematical complexity. This text is organized by the type of structural modeling. The author simplifies the subject by presenting a single degree-of-freedom system in the first chapters, then moves to systems with many degrees-of-freedom in the following chapters. Finally, the text moves to applications of the first chapters and special topics in structural dynamics.


This revised textbook intends to provide enhanced learning materials for students to learn structural dynamics, ranging from basics to advanced topics, including their application. When a line-by-line programming language is included with solved problems, students can learn course materials easily and visualize the solved problems using a program. Among several programming languages, MATLAB® has been adopted by many academic institutions across several disciplines. Many educators and students in the U.S. and many international institutions can readily access MATLAB®, which has an appropriate programming language to solve and simulate problems in the textbook. It effectively allows matrix manipulations and plotting of data. Therefore, multi-degree-of freedom problems can be solved in conjunction with the finite element method using MATLAB®.

The revised version will include:

·         Solved 34 examples in Chapters 1 through 22 along with MALAB codes.

·         Basics of earthquake design with current design codes (ASCE 7-16 and IBC 2018).

·         Additional figures obtained from MATLAB codes to illustrate time-variant structural behavior and dynamic characteristics (e.g., time versus displacement and spectral chart).

This text is essential for civil engineering students. Professional civil engineers will find it an ideal reference.

Contents:

1.    Undamped Single Degree-of-Freedom System

2.    Damped Single Degree-of-Freedom System

3.    Response of One-Degree-of-Freedom System to Harmonic Loading

4.    Response to General Dynamic Loading

5.    Response Spectra

6.    Nonlinear Structural Response

7.    Free Vibration of a Shear Building

8.    Forced Motion of Shear Buildings

9.    Reduction of Dynamic Matrices

10. Dynamic Analysis of Beams

11. Dynamic Analysis of Plane Frames

12. Dynamic Analysis of Grid Frames

13. Dynamic Analysis of Three-Dimensional Frames

14. Dynamic Analysis of Trusses

15. Dynamic Analysis of Structures Using the Finite Element Method

16. Time History Response of Multi-Degree-of-Freedom Systems

17. Dynamic Analysis of Systems with Distributed Properties

18. Discretization of Continuous Systems

19. Fourier Analysis and Response in the Frequency Domain

20. Evaluation of Absolute Damping from Modal Damping Ratios

21. Generalized Coordinates and Rayleigh’s Method

22. Random Vibration

23. Dynamic Method

24. IBC-2018 and ASCE 7-16

About the Author:

Dr. Young Hoon Kim, P.E. (CA, KY) has taught undergraduate and graduate courses in structural engineering at the J. B. Speed School of Engineering at the University of Louisville, Kentucky. He received his Ph.D. in Civil Engineering from Texas A&M University in 2008.  After completing his Ph.D., he worked for the Texas Transportation Institute and Oregon State University as a postdoctoral researcher. His recent research includes concrete design and the assessment of structural performance. Also, he has served as an editorial board member of ASTM International - the Journal of Testing and Evaluation.
   « Back
Like us on our Pages
instagramlogo Facebooklogo 20 20 20 20
 
logo logo logo
  footer 2024, BSP Books. Website design by BSP Books, Best viewed in 1024x768. footer